Question:

Let $\hat{i}, \hat{j}$ and $\hat{k}$ be the unit vectors along the three positive coordinate axes Let $ \overrightarrow{ a }=3 \hat{ i }+\hat{ j }-\hat{ k }, $ $\overrightarrow{ b }=\hat{ i }+ b _2 \hat{ j }+ b _3 \hat{ k }, b _2, b _3 \in R , $ $ \overrightarrow{ c }= c _1 \hat{ i }+ c _2 \hat{ j }+ c _3 \hat{ k }, c _1, c _2, c _3 \in R$ be three vectors such that $b_2 b_3>0, \vec{a} \cdot \vec{b}=0$ and $\begin{pmatrix}0 & -c_3 & c_2 \\c_3 & 0 & -c_1 \\-c_2 & c_1 & 0\end{pmatrix}\begin{pmatrix} 1 \\b_2 \\b_3\end{pmatrix}=\begin{pmatrix}3-c_1 \\1-c_2 \\-1-c_3\end{pmatrix} $. Then, which of the following is/are TRUE?

Updated On: May 8, 2025
  • \(\vec{a}.\vec{c}=0\)
  • \(\vec{b}.\vec{c}=0\)
  • \(\left | \vec{b} \right |> \sqrt10\)
  • \(\left | \vec{c} \right |\leq  \sqrt10\)

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B, C, D

Solution and Explanation

We are given three vectors and some conditions. Our goal is to determine which of the following statements are true based on the given vector relations.

Vector \( \mathbf{a} \): \[ \mathbf{a} = 3\hat{i} + \hat{j} - \hat{k} \]

Vector \( \mathbf{b} \): \[ \mathbf{b} = b_2 \hat{i} + b_3 \hat{k} \] where \( b_2, b_3 \in \mathbb{R} \).

Vector \( \mathbf{c} \): \[ \mathbf{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k} \] where \( c_1, c_2, c_3 \in \mathbb{R} \).

Given Conditions:

1. The dot product condition: \[ \mathbf{a} \cdot \mathbf{b} = 0 \] which implies that vectors \( \mathbf{a} \) and \( \mathbf{b} \) are orthogonal.

2. The matrix equation: \[ \begin{pmatrix} 0 & -c_3 & c_2 \\ c_3 & 0 & -c_1 \\ -c_2 & c_1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 3 - c_1 \\ 1 - c_2 \\ -1 - c_3 \end{pmatrix} \]

Step 1: Analyzing the dot product condition \( \mathbf{a} \cdot \mathbf{b} = 0 \)

We compute the dot product of vectors \( \mathbf{a} \) and \( \mathbf{b} \) as follows:

\[ \mathbf{a} \cdot \mathbf{b} = (3\hat{i} + \hat{j} - \hat{k}) \cdot (b_2 \hat{i} + b_3 \hat{k}) \] Expanding this: \[ \mathbf{a} \cdot \mathbf{b} = 3b_2 + 1(0) + (-1)b_3 = 3b_2 - b_3 \] Given that \( \mathbf{a} \cdot \mathbf{b} = 0 \), we have: \[ 3b_2 - b_3 = 0 \quad \Rightarrow \quad b_3 = 3b_2 \] Therefore, we know that \( b_3 = 3b_2 \).

Step 2: Analyzing the matrix equation

Next, we expand the left-hand side of the matrix equation:

\[ \begin{pmatrix} 0 & -c_3 & c_2 \\ c_3 & 0 & -c_1 \\ -c_2 & c_1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 0 \cdot 1 + (-c_3) b_2 + c_2 b_3 \\ c_3 \cdot 1 + 0 \cdot b_2 + (-c_1) b_3 \\ (-c_2) \cdot 1 + c_1 \cdot b_2 + 0 \cdot b_3 \end{pmatrix} = \begin{pmatrix} -c_3 b_2 + c_2 b_3 \\ c_3 - c_1 b_3 \\ -c_2 + c_1 b_2 \end{pmatrix} \] This is equal to the right-hand side: \[ \begin{pmatrix} 3 - c_1 \\ 1 - c_2 \\ -1 - c_3 \end{pmatrix} \] Hence, we have the following system of equations: 1. \( -c_3 b_2 + c_2 b_3 = 3 - c_1 \) 2. \( c_3 - c_1 b_3 = 1 - c_2 \) 3. \( -c_2 + c_1 b_2 = -1 - c_3 \) These equations will help us relate the components of the vectors.

Step 3: Analyzing the Statements

Option A: \( \mathbf{a} \cdot \mathbf{c} = 0 \)

We need to check if the dot product \( \mathbf{a} \cdot \mathbf{c} = 0 \). The dot product is:

\[ \mathbf{a} \cdot \mathbf{c} = (3\hat{i} + \hat{j} - \hat{k}) \cdot (c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}) \] Expanding: \[ \mathbf{a} \cdot \mathbf{c} = 3c_1 + 1c_2 - 1c_3 = 3c_1 + c_2 - c_3 \] From the matrix equation, we know that: \[ 3c_1 + c_2 - c_3 = 0 \] Therefore, \( \mathbf{a} \cdot \mathbf{c} = 0 \) is true.

Option B: \( \mathbf{b} \cdot \mathbf{c} = 0 \)

Now we check \( \mathbf{b} \cdot \mathbf{c} \). This is given by:

\[ \mathbf{b} \cdot \mathbf{c} = b_2 c_1 + b_3 c_2 = 0 \] Substituting \( b_3 = 3b_2 \), we get: \[ b_2 c_1 + (3b_2) c_2 = b_2 (c_1 + 3c_2) = 0 \] For this to hold, we must have: \[ c_1 + 3c_2 = 0 \] Therefore, \( \mathbf{b} \cdot \mathbf{c} = 0 \) is true.

Option C: \( |\mathbf{b}| > \sqrt{10} \)

The magnitude of \( \mathbf{b} \) is:

\[ |\mathbf{b}| = \sqrt{b_2^2 + b_3^2} = \sqrt{b_2^2 + (3b_2)^2} = \sqrt{b_2^2 + 9b_2^2} = \sqrt{10b_2^2} = \sqrt{10} |b_2| \] Therefore, \( |\mathbf{b}| = \sqrt{10} |b_2| \), implying that \( |\mathbf{b}| \geq \sqrt{10} \). Hence, this statement is true.

Option D: \( |\mathbf{c}| \leq \sqrt{10} \)

The magnitude of \( \mathbf{c} \) is:

\[ |\mathbf{c}| = \sqrt{c_1^2 + c_2^2 + c_3^2} \] From the matrix equation, we know that \( |\mathbf{c}| \leq \sqrt{10} \), so this statement is true.

Final Answer:

The correct options are B, C, D.

Was this answer helpful?
0
0

Questions Asked in JEE Advanced exam

View More Questions

Concepts Used:

Matrices

Matrix:

A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.

The basic operations that can be performed on matrices are:

  1. Addition of Matrices - The addition of matrices addition can only be possible if the number of rows and columns of both the matrices are the same.
  2. Subtraction of Matrices - Matrices subtraction is also possible only if the number of rows and columns of both the matrices are the same.
  3. Scalar Multiplication - The product of a matrix A with any number 'c' is obtained by multiplying every entry of the matrix A by c, is called scalar multiplication. 
  4. Multiplication of Matrices - Matrices multiplication is defined only if the number of columns in the first matrix and rows in the second matrix are equal. 
  5. Transpose of Matrices - Interchanging of rows and columns is known as the transpose of matrices.