\(\left | \vec{c} \right |\leq \sqrt10\)
We are given three vectors and some conditions. Our goal is to determine which of the following statements are true based on the given vector relations.
Vector \( \mathbf{a} \): \[ \mathbf{a} = 3\hat{i} + \hat{j} - \hat{k} \]
Vector \( \mathbf{b} \): \[ \mathbf{b} = b_2 \hat{i} + b_3 \hat{k} \] where \( b_2, b_3 \in \mathbb{R} \).
Vector \( \mathbf{c} \): \[ \mathbf{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k} \] where \( c_1, c_2, c_3 \in \mathbb{R} \).
1. The dot product condition: \[ \mathbf{a} \cdot \mathbf{b} = 0 \] which implies that vectors \( \mathbf{a} \) and \( \mathbf{b} \) are orthogonal.
2. The matrix equation: \[ \begin{pmatrix} 0 & -c_3 & c_2 \\ c_3 & 0 & -c_1 \\ -c_2 & c_1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 3 - c_1 \\ 1 - c_2 \\ -1 - c_3 \end{pmatrix} \]
We compute the dot product of vectors \( \mathbf{a} \) and \( \mathbf{b} \) as follows:
\[ \mathbf{a} \cdot \mathbf{b} = (3\hat{i} + \hat{j} - \hat{k}) \cdot (b_2 \hat{i} + b_3 \hat{k}) \] Expanding this: \[ \mathbf{a} \cdot \mathbf{b} = 3b_2 + 1(0) + (-1)b_3 = 3b_2 - b_3 \] Given that \( \mathbf{a} \cdot \mathbf{b} = 0 \), we have: \[ 3b_2 - b_3 = 0 \quad \Rightarrow \quad b_3 = 3b_2 \] Therefore, we know that \( b_3 = 3b_2 \).
Next, we expand the left-hand side of the matrix equation:
\[ \begin{pmatrix} 0 & -c_3 & c_2 \\ c_3 & 0 & -c_1 \\ -c_2 & c_1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 0 \cdot 1 + (-c_3) b_2 + c_2 b_3 \\ c_3 \cdot 1 + 0 \cdot b_2 + (-c_1) b_3 \\ (-c_2) \cdot 1 + c_1 \cdot b_2 + 0 \cdot b_3 \end{pmatrix} = \begin{pmatrix} -c_3 b_2 + c_2 b_3 \\ c_3 - c_1 b_3 \\ -c_2 + c_1 b_2 \end{pmatrix} \] This is equal to the right-hand side: \[ \begin{pmatrix} 3 - c_1 \\ 1 - c_2 \\ -1 - c_3 \end{pmatrix} \] Hence, we have the following system of equations: 1. \( -c_3 b_2 + c_2 b_3 = 3 - c_1 \) 2. \( c_3 - c_1 b_3 = 1 - c_2 \) 3. \( -c_2 + c_1 b_2 = -1 - c_3 \) These equations will help us relate the components of the vectors.
Option A: \( \mathbf{a} \cdot \mathbf{c} = 0 \)
We need to check if the dot product \( \mathbf{a} \cdot \mathbf{c} = 0 \). The dot product is:
\[ \mathbf{a} \cdot \mathbf{c} = (3\hat{i} + \hat{j} - \hat{k}) \cdot (c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}) \] Expanding: \[ \mathbf{a} \cdot \mathbf{c} = 3c_1 + 1c_2 - 1c_3 = 3c_1 + c_2 - c_3 \] From the matrix equation, we know that: \[ 3c_1 + c_2 - c_3 = 0 \] Therefore, \( \mathbf{a} \cdot \mathbf{c} = 0 \) is true.
Option B: \( \mathbf{b} \cdot \mathbf{c} = 0 \)
Now we check \( \mathbf{b} \cdot \mathbf{c} \). This is given by:
\[ \mathbf{b} \cdot \mathbf{c} = b_2 c_1 + b_3 c_2 = 0 \] Substituting \( b_3 = 3b_2 \), we get: \[ b_2 c_1 + (3b_2) c_2 = b_2 (c_1 + 3c_2) = 0 \] For this to hold, we must have: \[ c_1 + 3c_2 = 0 \] Therefore, \( \mathbf{b} \cdot \mathbf{c} = 0 \) is true.
Option C: \( |\mathbf{b}| > \sqrt{10} \)
The magnitude of \( \mathbf{b} \) is:
\[ |\mathbf{b}| = \sqrt{b_2^2 + b_3^2} = \sqrt{b_2^2 + (3b_2)^2} = \sqrt{b_2^2 + 9b_2^2} = \sqrt{10b_2^2} = \sqrt{10} |b_2| \] Therefore, \( |\mathbf{b}| = \sqrt{10} |b_2| \), implying that \( |\mathbf{b}| \geq \sqrt{10} \). Hence, this statement is true.
Option D: \( |\mathbf{c}| \leq \sqrt{10} \)
The magnitude of \( \mathbf{c} \) is:
\[ |\mathbf{c}| = \sqrt{c_1^2 + c_2^2 + c_3^2} \] From the matrix equation, we know that \( |\mathbf{c}| \leq \sqrt{10} \), so this statement is true.
The correct options are B, C, D.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.