The value of $\frac{16 S _{1}}{\pi}$ is_____
Step 1: Understanding the given functions
We are given two functions $g_1(x)$ and $g_2(x)$ defined as follows:
- $g_1(x) = 1$
- $g_2(x) = |4x - \pi|$
Also, we are given the function $f(x) = \sin^2 x$. The task is to evaluate $S_1$ and then find the value of $\frac{16S_1}{\pi}$.
Step 2: Define $S_1$
We are asked to compute the integral for $S_1$ defined as:
$$ S_1 = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} f(x) \cdot g_1(x) \, dx. $$
Since $g_1(x) = 1$, this simplifies to:
$$ S_1 = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \sin^2 x \, dx. $$
Step 3: Simplify the integral using trigonometric identity
To simplify the integral, we use the trigonometric identity for $\sin^2 x$:
$$ \sin^2 x = \frac{1}{2} \left( 1 - \cos 2x \right). $$
Thus, the integral becomes:
$$ S_1 = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \frac{1}{2} \left( 1 - \cos 2x \right) \, dx. $$
Step 4: Compute the integral
We can now compute the integral of each term separately:
$$ S_1 = \frac{1}{2} \left[ \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} 1 \, dx - \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \cos 2x \, dx \right]. $$
The first integral is straightforward:
$$ \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} 1 \, dx = \frac{3\pi}{8} - \frac{\pi}{8} = \frac{\pi}{4}. $$
Now, we compute the second integral:
$$ \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \cos 2x \, dx. $$
The integral of $\cos 2x$ is:
$$ \int \cos 2x \, dx = \frac{\sin 2x}{2}. $$
Evaluating this from $\frac{\pi}{8}$ to $\frac{3\pi}{8}$:
$$ \left[ \frac{\sin 2x}{2} \right]_{\frac{\pi}{8}}^{\frac{3\pi}{8}} = \frac{\sin \left( \frac{3\pi}{4} \right)}{2} - \frac{\sin \left( \frac{\pi}{4} \right)}{2} = \frac{\frac{\sqrt{2}}{2}}{2} - \frac{\frac{\sqrt{2}}{2}}{2} = 0. $$
Step 5: Combine the results
Now, we can combine the results:
$$ S_1 = \frac{1}{2} \left( \frac{\pi}{4} - 0 \right) = \frac{\pi}{8}. $$
Step 6: Find $\frac{16S_1}{\pi}$
Finally, we compute:
$$ \frac{16S_1}{\pi} = \frac{16 \times \frac{\pi}{8}}{\pi} = 2. $$
Thus, the value of $\frac{16S_1}{\pi}$ is 2.
The value of $\frac{48 \,S _{2}}{\pi^{2}}$ is_____
Step 1: Understand the given functions
We are given the functions $g_1(x)$ and $g_2(x)$ defined as follows:
- $g_1(x) = 1$
- $g_2(x) = |4x - \pi|$
Also, we are given the function $f(x) = \sin^2 x$. We are tasked with finding the value of $\frac{48S_2}{\pi^2}$, where $S_2$ is defined as:
$$ S_2 = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} f(x) \cdot g_2(x) \, dx = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \sin^2 x \left|4x - \pi\right| \, dx. $$
Step 2: Simplify the expression for $S_2$
We need to evaluate the integral for $S_2$. First, express $|4x - \pi|$ as $4|x - \frac{\pi}{4}|$.
Thus, the integral becomes:
$$ S_2 = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \sin^2 x \cdot 4 \left|x - \frac{\pi}{4}\right| \, dx. $$
We can factor out the constant 4:
$$ S_2 = 4 \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \sin^2 x \left|x - \frac{\pi}{4}\right| \, dx. $$
Step 3: Change of variables
Now, let’s make the substitution $x - \frac{\pi}{4} = t$, so that $dx = dt$. When $x = \frac{\pi}{8}$, $t = -\frac{\pi}{8}$, and when $x = \frac{3\pi}{8}$, $t = \frac{\pi}{8}$.
Thus, the integral becomes:
$$ S_2 = 4 \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} \sin^2 \left( \frac{\pi}{4} + t \right) |t| \, dt. $$
Step 4: Simplify the expression for $\sin^2 \left( \frac{\pi}{4} + t \right)$
We use the trigonometric identity for $\sin^2 \left( \frac{\pi}{4} + t \right)$:
$$ \sin^2 \left( \frac{\pi}{4} + t \right) = \frac{1}{2} \left( 1 - \cos 2 \left( \frac{\pi}{4} + t \right) \right). $$
Substituting this back into the integral, we get:
$$ S_2 = 4 \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} \frac{1}{2} \left( 1 - \cos \left( 2 \times \left( \frac{\pi}{4} + t \right) \right) \right) |t| \, dt. $$
Simplifying the cosine term:
$$ S_2 = 2 \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} \left( 1 - \cos \left( \frac{\pi}{2} + 2t \right) \right) |t| \, dt. $$
Step 5: Expand and simplify
The cosine term simplifies as:
$$ \cos \left( \frac{\pi}{2} + 2t \right) = -\sin(2t). $$
Thus, the integral becomes:
$$ S_2 = 2 \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} \left( 1 + \sin(2t) \right) |t| \, dt. $$
We now split the integral into two parts:
$$ S_2 = 2 \left( \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} |t| \, dt + \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} |t| \sin(2t) \, dt \right). $$
Step 6: Evaluate the integrals
The first integral is straightforward:
$$ \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} |t| \, dt = 2 \int_{0}^{\frac{\pi}{8}} t \, dt = 2 \left[ \frac{t^2}{2} \right]_0^{\frac{\pi}{8}} = 2 \times \frac{\pi^2}{128} = \frac{\pi^2}{64}. $$
The second integral is 0 because $\sin(2t)$ is an odd function and $|t|$ is even, so their product integrated over the symmetric interval $[-\frac{\pi}{8}, \frac{\pi}{8}]$ gives zero:
$$ \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} |t| \sin(2t) \, dt = 0. $$
Step 7: Combine the results
Thus, we have:
$$ S_2 = 2 \times \frac{\pi^2}{64} = \frac{\pi^2}{32}. $$
Step 8: Compute $\frac{48S_2}{\pi^2}$
Finally, we compute:
$$ \frac{48S_2}{\pi^2} = \frac{48 \times \frac{\pi^2}{32}}{\pi^2} = \frac{48}{32} = 1.5. $$
Thus, the value of $\frac{48S_2}{\pi^2}$ is 1.5.
The value \( 9 \int_{0}^{9} \left\lfloor \frac{10x}{x+1} \right\rfloor \, dx \), where \( \left\lfloor t \right\rfloor \) denotes the greatest integer less than or equal to \( t \), is ________.
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____