Comprehension

Let $g _{ i }:\left[\frac{\pi}{8}, \frac{3 \pi}{8}\right] \rightarrow R , i =1,2$ and $f :\left[\frac{\pi}{8}, \frac{3 \pi}{8}\right] \rightarrow R$ be functions such that
$g_{1}(x)=1, g_{2}(x)=|4 x-\pi|$ and $f(x)=\sin ^{2} x$, for all $x \in\left[\frac{\pi}{8}, \frac{3 \pi}{8}\right] $ ,
Define $S_{i}=\int\limits_{\frac{\pi}{8}}^{\frac{3 \pi}{8}} f(x) \cdot g_{i}(x) d x, i=1,2$

Question: 1

The value of $\frac{16 S _{1}}{\pi}$ is_____

Updated On: May 23, 2024
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 2

Solution and Explanation

\(S_1 = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \sin^2 x \cdot 1 \, dx\)

=\(\frac{1}{2} \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} (1 - \cos 2x) \, dx\)

\(\frac{1}{2} \left( x - \frac{{\sin 2x}}{x} \right)_{\frac{\pi}{8}}^{\frac{3\pi}{8}}\)

\(\frac{1}{2} \left( \frac{\pi}{4} - 0 \right)\)

\(\frac{\pi}{8}\)

\(\frac{{16S_1}}{{\pi}} = 2\)

Was this answer helpful?
0
0
Question: 2

The value of $\frac{48 \,S _{2}}{\pi^{2}}$ is_____

Updated On: Apr 24, 2024
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 1.5

Solution and Explanation

\(S_2 = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \sin^2 x \left|4x - \pi\right| \, dx\)

=\(\int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} 4 \sin^2 x \left|x - \frac{\pi}{4}\right| \, dx\)

Let \(x - \frac{\pi}{4} = t\)

\(=> dx = dt\)

\(S_2 = \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} 4 \sin^2 \left(\frac{\pi}{4} + t\right) \left|t\right| \, dt\)

\(\int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} 2(1 - \cos 2(\frac{\pi}{4} + t)) \left|t\right| \, dt\)

\(\int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} (2 + 2 \sin 2t) \left|t\right| \, dt\)

=\(2\int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} |t| \, dt + 2\int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} |t| \sin 2t \, dt\)

\(4\int_{0}^{\frac{\pi}{8}} t \, dt + 0\)

\(S_2 = \left[2t^2\right]_{0}^{\frac{\pi}{8}}\)

\(\frac{\pi^2}{32}\)

\(\frac{48S_2}{\pi^2} = \frac{3}{2} = 1.5\)

Was this answer helpful?
0
0

Questions Asked in JEE Advanced exam

View More Questions