\(S_1 = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \sin^2 x \cdot 1 \, dx\)
=\(\frac{1}{2} \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} (1 - \cos 2x) \, dx\)
= \(\frac{1}{2} \left( x - \frac{{\sin 2x}}{x} \right)_{\frac{\pi}{8}}^{\frac{3\pi}{8}}\)
= \(\frac{1}{2} \left( \frac{\pi}{4} - 0 \right)\)
= \(\frac{\pi}{8}\)
\(\frac{{16S_1}}{{\pi}} = 2\)
\(S_2 = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \sin^2 x \left|4x - \pi\right| \, dx\)
=\(\int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} 4 \sin^2 x \left|x - \frac{\pi}{4}\right| \, dx\)
Let \(x - \frac{\pi}{4} = t\)
\(=> dx = dt\)
\(S_2 = \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} 4 \sin^2 \left(\frac{\pi}{4} + t\right) \left|t\right| \, dt\)
= \(\int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} 2(1 - \cos 2(\frac{\pi}{4} + t)) \left|t\right| \, dt\)
= \(\int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} (2 + 2 \sin 2t) \left|t\right| \, dt\)
=\(2\int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} |t| \, dt + 2\int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} |t| \sin 2t \, dt\)
= \(4\int_{0}^{\frac{\pi}{8}} t \, dt + 0\)
\(S_2 = \left[2t^2\right]_{0}^{\frac{\pi}{8}}\)
= \(\frac{\pi^2}{32}\)
\(\frac{48S_2}{\pi^2} = \frac{3}{2} = 1.5\)
A positive, singly ionized atom of mass number $ A_M $ is accelerated from rest by the voltage $ 192 \, \text{V} $. Thereafter, it enters a rectangular region of width $ w $ with magnetic field $ \vec{B}_0 = 0.1\hat{k} \, \text{T} $. The ion finally hits a detector at the distance $ x $ below its starting trajectory. Which of the following option(s) is(are) correct?
$ \text{(Given: Mass of neutron/proton = } \frac{5}{3} \times 10^{-27} \, \text{kg, charge of the electron = } 1.6 \times 10^{-19} \, \text{C).} $