Step 1: Compute \(a = f(g(10))\)
Given g(x) = \(\frac{x}{x-9}\), compute g(10):
\[ g(10) = \frac{10}{10 - 9} = \frac{10}{1} = 10. \]
Now, substitute g(10) into \(f(x) = x^2 + 9:\)
\[ f(g(10)) = f(10) = 10^2 + 9 = 100 + 9 = 109. \]
Thus: a = 109.
Step 2: Compute \(b = g(f(3))\)
Given \(f(x) = x^2 + 9\), compute f(3):
\[ f(3) = 3^2 + 9 = 9 + 9 = 18. \]
Now, substitute f(3) into \(g(x) = \frac{x}{x-9}:\)
\[ g(f(3)) = g(18) = \frac{18}{18 - 9} = \frac{18}{9} = 2. \]
Thus: b = 2.
Step 3: Equation of the ellipse The equation of the ellipse is:
\[ \frac{x^2}{a} + \frac{y^2}{b} = 1. \]
Substitute a = 109 and b = 2:
\[ \frac{x^2}{109} + \frac{y^2}{2} = 1. \]
Step 4: Eccentricity e The eccentricity of an ellipse is given by:
\[ e^2 = 1 - \frac{\text{smaller denominator}}{\text{larger denominator}}. \]
Here, the larger denominator is a = 109, and the smaller denominator is b = 2:
\[ e^2 = 1 - \frac{2}{109}. \]
\[ e^2 = \frac{109}{109} - \frac{2}{109} = \frac{107}{109}. \]
Step 5: Length of the latus rectum \(\ell\) The length of the latus rectum of an ellipse is given by:
\[ \ell = \frac{2b}{\sqrt{a}}. \]
Substitute b = 2 and a = 109:
\[ \ell = \frac{2(2)}{\sqrt{109}} = \frac{4}{\sqrt{109}}. \]
Step 6: Compute \(8e^2 + \ell^2\) First, compute \(\ell^2:\)
\[ \ell^2 = \left(\frac{4}{\sqrt{109}}\right)^2 = \frac{16}{109}. \]
Now compute \(8e^2:\)
\[ 8e^2 = 8 \times \frac{107}{109} = \frac{856}{109}. \]
Finally:
\[ 8e^2 + \ell^2 = \frac{856}{109} + \frac{16}{109} = \frac{872}{109} = 8. \]
Final Answer: Option (2).