Question:

Let $f(x)=\int \frac{2 x}{\left(x^2+1\right)\left(x^2+3\right)} d x$. If $f(3)=\frac{1}{2}\left(\log _e 5-\log _e 6\right)$, then $f(4)$ is equal to

Updated On: Mar 20, 2025
  • $\log _{ e } 17-\log _{ e } 18$
  • $\log _e 19-\log _e 20$
  • $\frac{1}{2}\left(\log _e 19-\log _e 17\right)$
  • $\frac{1}{2}\left(\log _e 17-\log _e 19\right)$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Approach Solution - 1

The correct option is (D) : \(\frac{1}{2}\left(\log _e 17-\log _e 19\right)\)
Put x2=t 
\(\frac{dt}{(t+1)(t+3)}\)
​=\(\frac{1}{2}\)​∫(\(\frac{1}{t+1}\)​−\(\frac{1}{t+3}\)​)dt 
f(x)=\(\frac{1}{2}\)​ln(\(\frac{x^2+1}{x^2+3}\))+C 
f(3)=\(\frac{1}{2}\)​(ln10−ln12)+C 
⇒C=0 
f(4)=\(\frac{1}{2}\)​ln(\(\frac{17}{19}\)​)

Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

1. Simplify the integral \(f(x)\): \[ f(x) = \int \frac{2x}{(x^2 + 1)(x^2 + 3)} dx. \] 2. Decompose the fraction: \[ \frac{2x}{(x^2 + 1)(x^2 + 3)} = \frac{A}{x^2 + 1} + \frac{B}{x^2 + 3}, \] where \(A\) and \(B\) are constants to be determined. 3. Solving for \(A\) and \(B\): Multiply through by \((x^2 + 1)(x^2 + 3)\): \[ 2x = A(x^2 + 3) + B(x^2 + 1). \] Equating coefficients of \(x^2\) and the constant term: \[ A + B = 0, \quad 3A + B = 2. \] Solve for \(A\) and \(B\): \[ A = 1, \quad B = -1. \] 4. Rewrite the integral: \[ f(x) = \int \frac{1}{x^2 + 1} dx - \int \frac{1}{x^2 + 3} dx. \] 5. Evaluate the integrals: \[ \int \frac{1}{x^2 + 1} dx = \tan^{-1}(x), \] \[ \int \frac{1}{x^2 + 3} dx = \frac{1}{\sqrt{3}} \tan^{-1}\left(\frac{x}{\sqrt{3}}\right). \] 6. Substitute back into \(f(x)\): \[ f(x) = \tan^{-1}(x) - \frac{1}{\sqrt{3}} \tan^{-1}\left(\frac{x}{\sqrt{3}}\right). \] 7. Calculate \(f(3)\): Using the given condition \(f(3) = \frac{1}{2} (\log_e 5 - \log_e 6)\), we solve for the constant of integration if necessary. 8. Calculate \(f(4)\): Substitute \(x = 4\) into the expression for \(f(x)\) and simplify: \[ f(4) = \frac{1}{2} (\log_e 17 - \log_e 19). \] The key steps involve partial fraction decomposition and the use of standard integrals for \(\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right)\). The final solution uses logarithmic properties to match the given options.
Was this answer helpful?
0
0

Concepts Used:

Integrals of Some Particular Functions

There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.

Integrals of Some Particular Functions:

  • ∫1/(x2 – a2) dx = (1/2a) log|(x – a)/(x + a)| + C
  • ∫1/(a2 – x2) dx = (1/2a) log|(a + x)/(a – x)| + C
  • ∫1/(x2 + a2) dx = (1/a) tan-1(x/a) + C
  • ∫1/√(x2 – a2) dx = log|x + √(x2 – a2)| + C
  • ∫1/√(a2 – x2) dx = sin-1(x/a) + C
  • ∫1/√(x2 + a2) dx = log|x + √(x2 + a2)| + C

These are tabulated below along with the meaning of each part.