Step 1: Apply the condition of continuity at \( x = 0 \).
For continuity at \( x = 0 \),
\[
\lim_{x \to 0} f(x) = f(0) = b
\]
Step 2: Simplify the expression for \( x \neq 0 \).
\[
f(x) = \frac{|a|x}{x} + \frac{2x^2}{x} - \frac{2\sin|x|\cos|x|}{x}
\]
\[
= |a| + 2x - \frac{\sin 2|x|}{x}
\]
Step 3: Evaluate the limit.
As \( x \to 0 \),
\[
\lim_{x \to 0} 2x = 0,\quad
\lim_{x \to 0} \frac{\sin 2|x|}{x} = 2
\]
Hence,
\[
\lim_{x \to 0} f(x) = |a| - 2
\]
Step 4: Find \( a \) and \( b \).
For continuity,
\[
b = |a| - 2
\]
From the options, the valid value is
\[
a = 2,\quad b = 0
\]
Step 5: Final Answer.
\[
a + b = 2
\]