Concept:
For small \( t \),
\[
\sec t = 1+\frac{t^2}{2}+o(t^2),
\quad
\log(\sec t)=\frac{t^2}{2}+o(t^2)
\]
Also, standard limits and series expansions are used.
Step 1: Simplify the numerator
\[
\log_e\!\big(\sec(ex)\cdot \sec(e^2x)\cdots \sec(e^{10}x)\big)
= \sum_{k=1}^{10}\log(\sec(e^k x))
\]
For small \( x \),
\[
\log(\sec(e^k x)) \sim \frac{(e^k x)^2}{2}
\]
Hence,
\[
\text{Numerator} \sim \frac{x^2}{2}\sum_{k=1}^{10} e^{2k}
\]
Step 2: Evaluate the geometric sum
\[
\sum_{k=1}^{10} e^{2k}
= e^2\frac{e^{20}-1}{e^2-1}
\]
Thus,
\[
\text{Numerator} \sim \frac{x^2}{2}\, e^2\frac{e^{20}-1}{e^2-1}
\]
Step 3: Simplify the denominator
For small \( x \),
\[
\cos x = 1-\frac{x^2}{2}+o(x^2)
\Rightarrow
e^{2\cos x} = e^{2-x^2} = e^2(1-x^2+o(x^2))
\]
So,
\[
e^2-e^{2\cos x} \sim e^2x^2
\]
Step 4: Take the limit
\[
\lim_{x\to 0}
\frac{\frac{x^2}{2}\, e^2\frac{e^{20}-1}{e^2-1}}
{e^2x^2}
= \frac{e^{20}-1}{2(e^2-1)}
\]