Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

A wheel of radius $ 0.2 \, \text{m} $ rotates freely about its center when a string that is wrapped over its rim is pulled by a force of $ 10 \, \text{N} $. The established torque produces an angular acceleration of $ 2 \, \text{rad/s}^2 $. Moment of inertia of the wheel is............. kg m².
Rods $x$ and $y$ of equal dimensions but of different materials are joined as shown in figure. Temperatures of end points $A$ and $F$ are maintained at $100^\circ$C and $40^\circ$C respectively. Given the thermal conductivity of rod $x$ is three times of that of rod $y$, the temperature at junction points $B$ and $E$ are (close to): 
\(XPQY\) is a vertical smooth long loop having a total resistance \(R\), where \(PX\) is parallel to \(QY\) and the separation between them is \(l\). A constant magnetic field \(B\) perpendicular to the plane of the loop exists in the entire space. A rod \(CD\) of length \(L\,(L>l)\) and mass \(m\) is made to slide down from rest under gravity as shown. The terminal speed acquired by the rod is _______ m/s. 
Net gravitational force at the center of a square is found to be \( F_1 \) when four particles having masses \( M, 2M, 3M \) and \( 4M \) are placed at the four corners of the square as shown in figure, and it is \( F_2 \) when the positions of \( 3M \) and \( 4M \) are interchanged. The ratio \( \dfrac{F_1}{F_2} = \dfrac{\alpha}{\sqrt{5}} \). The value of \( \alpha \) is 