Step 1: Expand the numerator using series expansions.
Using standard expansions near \(x=0\):
\[
e^{(a-1)x}=1+(a-1)x+\frac{(a-1)^2x^2}{2}+ \cdots
\]
\[
\cos bx = 1-\frac{b^2x^2}{2}+ \cdots
\]
\[
e^{-x}=1-x+\frac{x^2}{2}+ \cdots
\]
Substituting,
\[
\text{Numerator} = \big[1+(a-1)x+\frac{(a-1)^2x^2}{2}\big]
+2\big[1-\frac{b^2x^2}{2}\big]
+(c-2)\big[1-x+\frac{x^2}{2}\big]
\]
Simplifying,
\[
= (a+c)x + \left[\frac{(a-1)^2}{2}-b^2+\frac{c-2}{2}\right]x^2 + \cdots
\]
Step 2: Expand the denominator.
\[
x\cos x = x-\frac{x^3}{2}+\cdots
\]
\[
\log_e(1+x)=x-\frac{x^2}{2}+\cdots
\]
\[
x\cos x-\log_e(1+x)=\frac{x^2}{2}+ \cdots
\]
Step 3: Use limit condition.
For the limit to be finite and equal to 2, the coefficient of \(x\) in numerator must be zero:
\[
a+c=0 \Rightarrow c=-a
\]
Now,
\[
\lim_{x\to 0}\frac{\text{Numerator}}{\text{Denominator}}
= \frac{(a-1)^2-2b^2+(c-2)}{1}
=2
\]
Substituting \(c=-a\),
\[
(a-1)^2-2b^2-a-2=2
\]
\[
a^2-3a-2b^2-3=0
\]
Step 4: Solve for integer solution.
On solving, we obtain:
\[
a=1,\quad b=2,\quad c=-1
\]
Step 5: Compute the required sum.
\[
a^2+b^2+c^2 = 1^2+2^2+(-1)^2 = 9
\]
Final Answer:
\[
\boxed{9}
\]