The given integral is:
\[ \int_0^a f(x) dx = e^{-a} + 4a^2 + a - 1. \]
Step 1: Differentiate with respect to \(a\):
\[ f(a) = -e^{-a} + 8a + 1. \]
Step 2: Differentiate again:
\[ f'(a) = e^{-a} + 8. \]
Step 3: General solution:
The general solution for \(y\) is: \[ y = c_1 f(x) + c_2 \implies \frac{dy}{dx} = c_1 f'(x), \quad \frac{d^2y}{dx^2} = c_1 f''(x). \]
Substitute values:
\[ f''(x) = -e^{-x}, \quad f'(x) = e^{-x} + 8. \]
The differential equation becomes:
\[ (8e^x + 1)\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0. \]
Final Answer:
\[ (8e^x + 1)\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0. \]
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.