Question:

Let $f$ be a non-negative function defined on the interval [0,1].if $\int_0^x \sqrt{1-(f'(t))^2}dt = \int_0^x f(t) dt , 0 \le x \le 1$ and $f (0) = 0$, then

Updated On: Jun 14, 2022
  • $f\bigg(\frac{1}{2}\bigg) < \frac{1}{2} \, and \, f \bigg(\frac{1}{3}\bigg) > \frac{1}{3}$
  • $f\bigg(\frac{1}{2}\bigg) > \frac{1}{2} \, and \, f \bigg(\frac{1}{3}\bigg) > \frac{1}{3}$
  • $f\bigg(\frac{1}{2}\bigg) < \frac{1}{2} \, and \, f \bigg(\frac{1}{3}\bigg) < \frac{1}{3}$
  • $f\bigg(\frac{1}{2}\bigg) > \frac{1}{2} \, and \, f \bigg(\frac{1}{3}\bigg) < \frac{1}{3}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Given $\int_0^x \sqrt{1-(f'(t))^2}dt = \int_0^x f(t) dt , 0 \le x \le 1$
Differentiating both sides w.r.t. x by using Leibnitz's
rule, we get
$\sqrt{1- \{f'(x) \}^2} =f(x) \, \, \Rightarrow \, \, f'(x) = \pm \sqrt {1- \{f(x)\}^2}$
$\Rightarrow \, \, \, \, \, \, \, \int \frac{f'(x)}{\sqrt{1-\{(x)\}^2}}dx =\pm \int dx \, \Rightarrow \, \, sin^{-1}\{f(x)\} =\pm x+c$
Put $ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, x=0 \, \Rightarrow \, \, sin^(-1) \{f(0)\}=c$
$\Rightarrow \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, c=sin^{-1} (0)=0 \, \, \, \, \, \, \, \, \, \, \, \, [\because f(0)=0]$
$\therefore \, \, \, \, \, f(x)=\pm sin x $
but $ \, \, \, \, f(x) \ge 0, \forall \, x\in \, [0,1]$
$\therefore \, \, f(x) =sin x$
As we know that,
sin x < x , $\forall $ x > 0
$\therefore \, \, \, \, \, \, \, \, \, sin\bigg(\frac{1}{2}\bigg)
Was this answer helpful?
0
0

Questions Asked in JEE Advanced exam

View More Questions

Concepts Used:

Integrals of Some Particular Functions

There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.

Integrals of Some Particular Functions:

  • ∫1/(x2 – a2) dx = (1/2a) log|(x – a)/(x + a)| + C
  • ∫1/(a2 – x2) dx = (1/2a) log|(a + x)/(a – x)| + C
  • ∫1/(x2 + a2) dx = (1/a) tan-1(x/a) + C
  • ∫1/√(x2 – a2) dx = log|x + √(x2 – a2)| + C
  • ∫1/√(a2 – x2) dx = sin-1(x/a) + C
  • ∫1/√(x2 + a2) dx = log|x + √(x2 + a2)| + C

These are tabulated below along with the meaning of each part.