\[ y' + y f'(x) - f(x) f'(x) = 0 \]
\[ y' = f'(x) \left( f(x) - y \right) \]
\[ y + 1 = e^{-f(x)} + f(x) \]
\[ y' + y f'(x) - f(x) f'(x) = 0 \]
\[ y + 1 = e^{-f(x)} + f(x) \]
Solving a First-Order Linear Differential Equation
We are given a differential function $f(x)$ with $\lim_{x \to \infty} f(x) = 0$. The function $y$ satisfies the differential equation $y' + yf'(x) - f(x)f'(x) = 0$, and $\lim_{x \to \infty} y(x) = 0$. We need to find the relationship between $y$ and $f(x)$.
Step 1: Rewrite the differential equation
The given differential equation is:
$$ y' + yf'(x) - f(x)f'(x) = 0 $$
Rewrite it in the standard form of a first-order linear differential equation $\frac{dy}{dx} + P(x)y = Q(x)$:
$$ \frac{dy}{dx} + f'(x)y = f(x)f'(x) $$
Here, $P(x) = f'(x)$ and $Q(x) = f(x)f'(x)$.
Step 2: Find the integrating factor (IF)
The integrating factor is given by $IF = e^{\int P(x) dx}$:
$$ IF = e^{\int f'(x) dx} = e^{f(x)} $$
Step 3: Multiply the differential equation by the integrating factor
$$ e^{f(x)} \frac{dy}{dx} + e^{f(x)} f'(x)y = e^{f(x)} f(x)f'(x) $$
Step 4: Recognize the left side as the derivative of a product
The left side is the derivative of $ye^{f(x)}$ with respect to $x$:
$$ \frac{d}{dx}(ye^{f(x)}) = e^{f(x)} \frac{dy}{dx} + y e^{f(x)} f'(x) $$
Step 5: Integrate both sides with respect to $x$
$$ \int \frac{d}{dx}(ye^{f(x)}) dx = \int e^{f(x)} f(x)f'(x) dx $$
$$ ye^{f(x)} = \int e^{f(x)} f(x) d(f(x)) $$
Let $u = f(x)$, then $du = d(f(x))$. The integral becomes $\int ue^u du$. Using integration by parts, $\int ue^u du = ue^u - e^u + C$.
Substituting back $f(x)$:
$$ ye^{f(x)} = f(x)e^{f(x)} - e^{f(x)} + C $$
Step 6: Solve for $y$
Divide by $e^{f(x)}$:
$$ y = f(x) - 1 + Ce^{-f(x)} $$
$$ y + 1 = f(x) + Ce^{-f(x)} $$
Step 7: Use the limit condition $\lim_{x \to \infty} y(x) = 0$
$$ \lim_{x \to \infty} (y(x) + 1) = \lim_{x \to \infty} (f(x) + Ce^{-f(x)}) $$
Given $\lim_{x \to \infty} f(x) = 0$ and $\lim_{x \to \infty} y(x) = 0$:
$$ 0 + 1 = 0 + C e^{-0} $$
$$ 1 = C \cdot 1 \implies C = 1 $$
Step 8: Substitute the value of C back into the equation
$$ y + 1 = f(x) + 1 \cdot e^{-f(x)} $$
$$ y + 1 = f(x) + e^{-f(x)} $$
Final Answer: (B) $y + 1 = e^{-f(x)} + f(x)$
Let $f: [0, \infty) \to \mathbb{R}$ be a differentiable function such that $f(x) = 1 - 2x + \int_0^x e^{x-t} f(t) \, dt$ for all $x \in [0, \infty)$. Then the area of the region bounded by $y = f(x)$ and the coordinate axes is