Given that
\(f\left(x\right)=\int\limits_{1/x}^{x} e^{-(t+\frac{1}{t})} d t\)
⇒\( \frac{d}{dx}f(x) = \frac{e^{-x+\frac{1}{x}}}{x}\frac{dx}{dx}-\frac{e^{-(\frac1 x+x)}}{1/x}x \frac{d \frac{1}{x}}{dx}\)
= \(\frac{e^{-(x+\frac{1}{x})}}{x} + xe^{-(x+\frac{1}{x})}x\frac{-1}{x^2}\)
= \(e^{-(x+\frac{1}{x})} + \frac{1}{x}e^{-(x+\frac{1}{x})}\)
= \(2e^{-(x+\frac{1}{x})}= 0\)
Hence, \(f(x)+\)\(f(\frac{1}{x}) = \)
\[\int\limits_{1/x}^{x} \frac{e^{-(t+\frac{1}{t}})} {t}dt+\int\limits_{x}^{1/x} \frac{e^{-(t+\frac{1}{t}})}{t} d t\]\[\int\limits_{1/x}^{1/x} \frac{e^{-(t+\frac{1}{t})}}{t} d t=0\]Now,
\(f(2^x)+f(\frac{1}{2^x})=f(2^x)+f(2^x)=0\)
Therefore, \(f(2^x) \) is an odd function.
Note, Let 2x= μ
log2μ =x
∴ f(2x) = h(x) an odd function
Then h(-x)
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?
Given below is the list of the different methods of integration that are useful in simplifying integration problems:
If f(x) and g(x) are two functions and their product is to be integrated, then the formula to integrate f(x).g(x) using by parts method is:
∫f(x).g(x) dx = f(x) ∫g(x) dx − ∫(f′(x) [ ∫g(x) dx)]dx + C
Here f(x) is the first function and g(x) is the second function.
The formula to integrate rational functions of the form f(x)/g(x) is:
∫[f(x)/g(x)]dx = ∫[p(x)/q(x)]dx + ∫[r(x)/s(x)]dx
where
f(x)/g(x) = p(x)/q(x) + r(x)/s(x) and
g(x) = q(x).s(x)
Hence the formula for integration using the substitution method becomes:
∫g(f(x)) dx = ∫g(u)/h(u) du
This method of integration is used when the integration is of the form ∫g'(f(x)) f'(x) dx. In this case, the integral is given by,
∫g'(f(x)) f'(x) dx = g(f(x)) + C