Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]
We are tasked with solving the equation:
$ \int_{0}^{1} f(\lambda x) \, d\lambda = a f(x) $
1. Substitution:
Let $ \lambda x = t $. Then, $ d\lambda = \frac{1}{x} \, dt $. The limits of integration change as follows:
- When $ \lambda = 0 $, $ t = 0 $.
- When $ \lambda = 1 $, $ t = x $.
Substituting into the integral, we get:
$ \frac{1}{x} \int_{0}^{x} f(t) \, dt = a f(x) $
Multiplying through by $ x $, we have:
$ \int_{0}^{x} f(t) \, dt = a x f(x) $
2. Differentiating Both Sides:
Differentiating both sides with respect to $ x $ using the Fundamental Theorem of Calculus, we get:
$ f(x) = a \left( x f'(x) + f(x) \right) $
Rearranging terms:
$ (1 - a) f(x) = a \cdot x f'(x) $
3. Separating Variables:
Rearranging further, we separate variables:
$ \frac{f'(x)}{f(x)} = \frac{(1-a)}{a} \cdot \frac{1}{x} $
Integrating both sides:
$ \ln f(x) = \frac{1-a}{a} \ln x + c $
Exponentiating both sides:
$ f(x) = e^c \cdot x^{\frac{1-a}{a}} $
4. Determining the Constant $ c $:
Using the condition $ f(1) = 1 $, we find $ c = 0 $. Thus:
$ f(x) = x^{\frac{1-a}{a}} $
5. Using the Condition $ f(16) = \frac{1}{8} $:
Substitute $ x = 16 $ and $ f(16) = \frac{1}{8} $:
$ \frac{1}{8} = (16)^{\frac{1-a}{a}} $
Taking the logarithm base 2:
$ -3 = \frac{4-4a}{a} $
Solving for $ a $:
$ a = 4 $
6. Finding $ f(x) $:
Substituting $ a = 4 $ into $ f(x) = x^{\frac{1-a}{a}} $, we get:
$ f(x) = x^{\frac{3}{4}} $
7. Finding $ f'(x) $:
Differentiating $ f(x) = x^{\frac{3}{4}} $:
$ f'(x) = \frac{3}{4} x^{-\frac{1}{4}} $
8. Evaluating $ 16 - f'\left(\frac{1}{16}\right) $:
First, compute $ f'\left(\frac{1}{16}\right) $:
$ f'\left(\frac{1}{16}\right) = \frac{3}{4} \left(\frac{1}{16}\right)^{-\frac{7}{4}} = \frac{3}{4} \cdot (2^{-4})^{-\frac{7}{4}} = \frac{3}{4} \cdot 2^7 = \frac{3}{4} \cdot 128 = 96 $
Now compute:
$ 16 - f'\left(\frac{1}{16}\right) = 16 - (-96) = 16 + 96 = 112 $
Final Answer:
The value of $ 16 - f'\left(\frac{1}{16}\right) $ is $ \boxed{112} $.
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice, is $ 4 \_\_\_\_\_$.