Let f:[0,1]\(\rightarrow\)R be a function. suppose the function f is twice differentiable,f(0)=0=f(1) and satisfies f''(x)-2f'(x)+f(x)\(\geq\)ex,x\(\in\)[0,1], which of the following is true?
0<f(x)<\(\infty\)
\(-\frac{1}{2}<f(x)<\frac{1}{2}\)
\(-\frac{1}{4}<f(x)<1\)
\(-\infty<f(x)<0\)

Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.
