The area of the ellipse is given by:
\[ A_1 = \pi \times \text{semi-major axis} \times \text{semi-minor axis} = \pi \times \frac{3}{2} \times 2 = 3\pi \]
Each successive ellipse \(E_{i+1}\) switches the axes, making the area:
\[ A_{i+1} = \pi \times \left(\frac{\text{semi-minor axis of } E_i}{2}\right)^2 \times \text{semi-major axis of } E_i \]
Since the minor axis becomes the major axis, the area relation forms a geometric series where each term is \(\left(\frac{2}{3}\right)^2\) of the previous term.
\[ \sum_{i=1}^{\infty} A_i = A_1 + \left(\frac{4}{9}\right)A_1 + \left(\frac{4}{9}\right)^2A_1 + \ldots = 3\pi \left(\frac{1}{1-\frac{4}{9}}\right) = \frac{27\pi}{5} \]
\[ \frac{5}{\pi} \sum_{i=1}^{\infty} A_i = \frac{5}{\pi} \times \frac{27\pi}{5} = 27 \]
Let \( f(x) = -3x^2(1 - x) - 3x(1 - x)^2 - (1 - x)^3 \). Then, \( \frac{df(x)}{dx} = \)
Let the area of the bounded region $ \{(x, y) : 0 \leq 9x \leq y^2, y \geq 3x - 6 \ be $ A $. Then 6A is equal to: