The area of the ellipse is given by:
\[ A_1 = \pi \times \text{semi-major axis} \times \text{semi-minor axis} = \pi \times \frac{3}{2} \times 2 = 3\pi \]
Each successive ellipse \(E_{i+1}\) switches the axes, making the area:
\[ A_{i+1} = \pi \times \left(\frac{\text{semi-minor axis of } E_i}{2}\right)^2 \times \text{semi-major axis of } E_i \]
Since the minor axis becomes the major axis, the area relation forms a geometric series where each term is \(\left(\frac{2}{3}\right)^2\) of the previous term.
\[ \sum_{i=1}^{\infty} A_i = A_1 + \left(\frac{4}{9}\right)A_1 + \left(\frac{4}{9}\right)^2A_1 + \ldots = 3\pi \left(\frac{1}{1-\frac{4}{9}}\right) = \frac{27\pi}{5} \]
\[ \frac{5}{\pi} \sum_{i=1}^{\infty} A_i = \frac{5}{\pi} \times \frac{27\pi}{5} = 27 \]
In the circuit shown, assuming the threshold voltage of the diode is negligibly small, then the voltage \( V_{AB} \) is correctly represented by:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: