Question:

Let α,β be the roots of the equation, ax2+bx+c=0.a,b,c are real and snnn and \(\begin{vmatrix}3 &1+s_1  &1+s_2\\1+s_1&1+s_2  &1+s_3\\1+s_2&1+s_3  &1+s_4\end{vmatrix}=\frac{k(a+b+c)^2}{a^4}\) then k=

Updated On: Apr 21, 2025
  • b2-4ac
  • b2+4ac
  • b2+2ac
  • 4ac-b2
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Given Determinant:

$\Delta = \begin{vmatrix} 3 & 1 + s_1 & 1 + s_2 \\ 1 + s_1 & 1 + s_2 & 1 + s_3 \\ 1 + s_2 & 1 + s_3 & 1 + s_4 \end{vmatrix}$

Using the identities: $s_1 = \alpha + \beta$, $s_2 = \alpha^2 + \beta^2$, $s_3 = \alpha^3 + \beta^3$, $s_4 = \alpha^4 + \beta^4$, and using $3 = 1 + 1 + 1$, we rewrite the matrix as:

$\Delta = \begin{vmatrix} 1 + 1 + 1 & 1 + \alpha + \beta & 1 + \alpha^2 + \beta^2 \\ 1 + \alpha + \beta & 1 + \alpha^2 + \beta^2 & 1 + \alpha^3 + \beta^3 \\ 1 + \alpha^2 + \beta^2 & 1 + \alpha^3 + \beta^3 & 1 + \alpha^4 + \beta^4 \end{vmatrix}$

This can be expressed as the square of a 3x3 determinant:

$\Delta = \left| \begin{matrix} 1 & 1 & 1 \\ 1 & \alpha & \beta \\ 1 & \alpha^2 & \beta^2 \end{matrix} \right|^2$

This is a Vandermonde determinant, and its value is: 

$\left| \begin{matrix} 1 & 1 & 1 \\ 1 & \alpha & \beta \\ 1 & \alpha^2 & \beta^2 \end{matrix} \right| = (\beta - \alpha)^2$

So,

$\Delta = (\beta - \alpha)^2 \cdot [\alpha\beta(\alpha + \beta) + 1]^2$   … (i)


Now consider the quadratic equation: $ax^2 + bx + c = 0$

Its roots are $\alpha$ and $\beta$. So,

  • $\alpha + \beta = -\frac{b}{a}$
  • $\alpha\beta = \frac{c}{a}$

Then,

$(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta = \left(-\frac{b}{a}\right)^2 - 4 \cdot \frac{c}{a} = \frac{b^2 - 4ac}{a^2}$

Also, note from (i):

$\Delta = (\alpha - \beta)^2 \cdot [\alpha\beta(\alpha + \beta) + 1]^2$

Substitute the values:

$\Delta = \left(\frac{b^2 - 4ac}{a^2}\right) \cdot \left[\frac{c}{a} \cdot \left(-\frac{b}{a}\right) + 1\right]^2$

$= \left(\frac{b^2 - 4ac}{a^2}\right) \cdot \left(\frac{-bc + a^2}{a^2}\right)^2 = \frac{1}{a^4}(b^2 - 4ac)(a + b + c)^2$

Thus, comparing with the form $\frac{k(a + b + c)^2}{a^4}$, we get:

$k = b^2 - 4ac$

Final Answer: Option (A): $b^2 - 4ac$

Was this answer helpful?
3
1

Concepts Used:

Quadratic Equations

A polynomial that has two roots or is of degree 2 is called a quadratic equation. The general form of a quadratic equation is y=ax²+bx+c. Here a≠0, b, and c are the real numbers

Consider the following equation ax²+bx+c=0, where a≠0 and a, b, and c are real coefficients.

The solution of a quadratic equation can be found using the formula, x=((-b±√(b²-4ac))/2a)

Two important points to keep in mind are:

  • A polynomial equation has at least one root.
  • A polynomial equation of degree ‘n’ has ‘n’ roots.

Read More: Nature of Roots of Quadratic Equation

There are basically four methods of solving quadratic equations. They are:

  1. Factoring
  2. Completing the square
  3. Using Quadratic Formula
  4. Taking the square root