Let α,β be the roots of the equation, ax2+bx+c=0.a,b,c are real and sn=αn+βn and \(\begin{vmatrix}3 &1+s_1 &1+s_2\\1+s_1&1+s_2 &1+s_3\\1+s_2&1+s_3 &1+s_4\end{vmatrix}=\frac{k(a+b+c)^2}{a^4}\) then k=
The correct answer is option (A): b2-4ac
\(\begin{vmatrix}3 &1+s_1 &1+s_2\\1+s_1&1+s_2 &1+s_3\\1+s_2&1+s_3 &1+s_4\end{vmatrix}\)=\(\begin{vmatrix} 1+1+1 &1+\alpha+\beta &1+\alpha^2+\beta^2\\ 1+\alpha+\beta&1+\alpha^2+\beta^2 &1+\alpha^3+\beta^3 \\ 1+\alpha^2+\beta^2&1+\alpha^3+\beta^3 & 1+\alpha^4+\beta^4 \end{vmatrix}\)
\(=\begin{vmatrix} 1 &1 &1 \\ 1&\alpha & \beta \\ 1&\alpha^2 &\beta^2 \end{vmatrix}\begin{vmatrix} 1 &1 &1 \\ 1&\alpha & \beta \\ 1&\alpha^2 &\beta^2 \end{vmatrix}\)
\(=[\alpha\beta(\beta-\alpha)-\beta^2+\alpha^2+\beta-\alpha][\alpha\beta(\beta-\alpha)-(\beta^2-\alpha^2)+(\beta-\alpha)]\)
\(=(\beta-\alpha)^2[\alpha\beta(\beta+\alpha)+1]^2\)………..(i)
Now, ax2+bx+c=0
here \(\alpha+\beta=-\frac{b}{a}\) and \(\alpha\beta=\frac{c}{a}\)
Now, \((\alpha-\beta)^2=(\alpha+\beta)^2-4\alpha\beta\)
\(\Rightarrow\)\(\frac{b^2}{a^2}-\frac{4c}{a}\) = \(\frac{b^2-4ac}{a^2}\)
Now, \(\Delta\) = \((\frac{b^2-4ac}{a^2})[\frac{c}{a}-(-\frac{b}{a})+1]\)
\(\Rightarrow (\frac{b^2-4ac}{a^2})(\frac{c+a+b}{a})^2\) = \(\frac{1}{a^4}(b^2-4ac)(a+b+c)^2\)
Now, \(\frac{k(a+b+c)^2}{a^4} =\frac{1}{a^4}(b^2-4ac)(a+b+c)^2\)
\(\Rightarrow k = (b^2-4ac)\)
A polynomial that has two roots or is of degree 2 is called a quadratic equation. The general form of a quadratic equation is y=ax²+bx+c. Here a≠0, b, and c are the real numbers.
Consider the following equation ax²+bx+c=0, where a≠0 and a, b, and c are real coefficients.
The solution of a quadratic equation can be found using the formula, x=((-b±√(b²-4ac))/2a)
Read More: Nature of Roots of Quadratic Equation