Let α,β be the roots of the equation, ax2+bx+c=0.a,b,c are real and sn=αn+βn and \(\begin{vmatrix}3 &1+s_1 &1+s_2\\1+s_1&1+s_2 &1+s_3\\1+s_2&1+s_3 &1+s_4\end{vmatrix}=\frac{k(a+b+c)^2}{a^4}\) then k=
Given Determinant:
$\Delta = \begin{vmatrix} 3 & 1 + s_1 & 1 + s_2 \\ 1 + s_1 & 1 + s_2 & 1 + s_3 \\ 1 + s_2 & 1 + s_3 & 1 + s_4 \end{vmatrix}$
Using the identities: $s_1 = \alpha + \beta$, $s_2 = \alpha^2 + \beta^2$, $s_3 = \alpha^3 + \beta^3$, $s_4 = \alpha^4 + \beta^4$, and using $3 = 1 + 1 + 1$, we rewrite the matrix as:
$\Delta = \begin{vmatrix} 1 + 1 + 1 & 1 + \alpha + \beta & 1 + \alpha^2 + \beta^2 \\ 1 + \alpha + \beta & 1 + \alpha^2 + \beta^2 & 1 + \alpha^3 + \beta^3 \\ 1 + \alpha^2 + \beta^2 & 1 + \alpha^3 + \beta^3 & 1 + \alpha^4 + \beta^4 \end{vmatrix}$
This can be expressed as the square of a 3x3 determinant:
$\Delta = \left| \begin{matrix} 1 & 1 & 1 \\ 1 & \alpha & \beta \\ 1 & \alpha^2 & \beta^2 \end{matrix} \right|^2$
This is a Vandermonde determinant, and its value is:
$\left| \begin{matrix} 1 & 1 & 1 \\ 1 & \alpha & \beta \\ 1 & \alpha^2 & \beta^2 \end{matrix} \right| = (\beta - \alpha)^2$
So,
$\Delta = (\beta - \alpha)^2 \cdot [\alpha\beta(\alpha + \beta) + 1]^2$ … (i)
Now consider the quadratic equation: $ax^2 + bx + c = 0$
Its roots are $\alpha$ and $\beta$. So,
Then,
$(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta = \left(-\frac{b}{a}\right)^2 - 4 \cdot \frac{c}{a} = \frac{b^2 - 4ac}{a^2}$
Also, note from (i):
$\Delta = (\alpha - \beta)^2 \cdot [\alpha\beta(\alpha + \beta) + 1]^2$
Substitute the values:
$\Delta = \left(\frac{b^2 - 4ac}{a^2}\right) \cdot \left[\frac{c}{a} \cdot \left(-\frac{b}{a}\right) + 1\right]^2$
$= \left(\frac{b^2 - 4ac}{a^2}\right) \cdot \left(\frac{-bc + a^2}{a^2}\right)^2 = \frac{1}{a^4}(b^2 - 4ac)(a + b + c)^2$
Thus, comparing with the form $\frac{k(a + b + c)^2}{a^4}$, we get:
$k = b^2 - 4ac$
Final Answer: Option (A): $b^2 - 4ac$
∫ √(2x2 - 5x + 2) dx = ∫ (41/60) dx,
and
-1/2 > α > 0, then α = ?
The number of common roots among the 12th and 30th roots of unity is ?
A polynomial that has two roots or is of degree 2 is called a quadratic equation. The general form of a quadratic equation is y=ax²+bx+c. Here a≠0, b, and c are the real numbers.
Consider the following equation ax²+bx+c=0, where a≠0 and a, b, and c are real coefficients.
The solution of a quadratic equation can be found using the formula, x=((-b±√(b²-4ac))/2a)
Read More: Nature of Roots of Quadratic Equation