Question:

Let α,β be the roots of the equation, ax2+bx+c=0.a,b,c are real and snnn and \(\begin{vmatrix}3 &1+s_1  &1+s_2\\1+s_1&1+s_2  &1+s_3\\1+s_2&1+s_3  &1+s_4\end{vmatrix}=\frac{k(a+b+c)^2}{a^4}\) then k=

Updated On: Dec 13, 2024
  • b2-4ac
  • b2+4ac
  • b2+2ac
  • 4ac-b2
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The correct answer is option (A): b2-4ac

\(\begin{vmatrix}3 &1+s_1  &1+s_2\\1+s_1&1+s_2  &1+s_3\\1+s_2&1+s_3  &1+s_4\end{vmatrix}\)=\(\begin{vmatrix} 1+1+1 &1+\alpha+\beta  &1+\alpha^2+\beta^2\\   1+\alpha+\beta&1+\alpha^2+\beta^2  &1+\alpha^3+\beta^3 \\   1+\alpha^2+\beta^2&1+\alpha^3+\beta^3  & 1+\alpha^4+\beta^4 \end{vmatrix}\)

\(=\begin{vmatrix} 1 &1  &1 \\   1&\alpha  & \beta \\   1&\alpha^2  &\beta^2  \end{vmatrix}\begin{vmatrix} 1 &1  &1 \\   1&\alpha  & \beta \\   1&\alpha^2  &\beta^2  \end{vmatrix}\)

\(=[\alpha\beta(\beta-\alpha)-\beta^2+\alpha^2+\beta-\alpha][\alpha\beta(\beta-\alpha)-(\beta^2-\alpha^2)+(\beta-\alpha)]\)

\(=(\beta-\alpha)^2[\alpha\beta(\beta+\alpha)+1]^2\)………..(i)

Now, ax2+bx+c=0

here \(\alpha+\beta=-\frac{b}{a}\) and \(\alpha\beta=\frac{c}{a}\)

Now, \((\alpha-\beta)^2=(\alpha+\beta)^2-4\alpha\beta\)

\(\Rightarrow\)\(\frac{b^2}{a^2}-\frac{4c}{a}\) = \(\frac{b^2-4ac}{a^2}\)

Now, \(\Delta\) = \((\frac{b^2-4ac}{a^2})[\frac{c}{a}-(-\frac{b}{a})+1]\)

\(\Rightarrow (\frac{b^2-4ac}{a^2})(\frac{c+a+b}{a})^2\) = \(\frac{1}{a^4}(b^2-4ac)(a+b+c)^2\)

Now,  \(\frac{k(a+b+c)^2}{a^4} =\frac{1}{a^4}(b^2-4ac)(a+b+c)^2\)

\(\Rightarrow k = (b^2-4ac)\)

Was this answer helpful?
0
1

Concepts Used:

Quadratic Equations

A polynomial that has two roots or is of degree 2 is called a quadratic equation. The general form of a quadratic equation is y=ax²+bx+c. Here a≠0, b, and c are the real numbers

Consider the following equation ax²+bx+c=0, where a≠0 and a, b, and c are real coefficients.

The solution of a quadratic equation can be found using the formula, x=((-b±√(b²-4ac))/2a)

Two important points to keep in mind are:

  • A polynomial equation has at least one root.
  • A polynomial equation of degree ‘n’ has ‘n’ roots.

Read More: Nature of Roots of Quadratic Equation

There are basically four methods of solving quadratic equations. They are:

  1. Factoring
  2. Completing the square
  3. Using Quadratic Formula
  4. Taking the square root