Let*′ be the binary operation on the set {1,2,3,4,5} defined by a*′b=H.C.F. of a and b. Is the operation *′ same as the operation * defined in Exercise 4 above? Justify your answer.
The binary operation *′ on the set {1, 2, 3 4, 5} is defined as a *′ b = H.C.F of a and b.
The operation table for the operation *′ can be given as:
| * | 1 | 2 | 3 | 4 | 5 |
| 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | 1 | 2 | 1 | 2 | 1 |
| 3 | 1 | 1 | 3 | 1 | 1 |
| 4 | 1 | 2 | 1 | 4 | 1 |
| 5 | 1 | 1 | 1 | 1 | 5 |
We observe that the operation tables for the operations * and *′ are the same.
Thus, the operation *′ is same as the operation*.
Let \( A = \{0,1,2,\ldots,9\} \). Let \( R \) be a relation on \( A \) defined by \((x,y) \in R\) if and only if \( |x - y| \) is a multiple of \(3\). Given below are two statements:
Statement I: \( n(R) = 36 \).
Statement II: \( R \) is an equivalence relation.
In the light of the above statements, choose the correct answer from the options given below.
A binary operation can be understood as a function f (x, y) that applies to two elements of the same set S, such that the result will also be an element of the set S. Examples of binary operations are the addition of integers, multiplication of whole numbers, etc. A binary operation is a rule that is applied on two elements of a set and the resultant element also belongs to the same set.
Read More: Truth Table
There are four main types of binary operations which are: