The provided system of equations remains consistent when \(α=β=γ−1=0\), indicating that the equations form a homogeneous system.
Therefore, we conclude that \(α=0,β=0\), and \(γ=1.\)
\(M = \begin{vmatrix} 0 & 2 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{vmatrix}\)
\(= -1×(-1)\) \(= 1\)
Answer is 1.50
\(\text{If} \begin{vmatrix} 1 & x & x^2 \\ x & x^2 & 1 \\ x^2 & 1 & x \end{vmatrix} = 7\ \text{and}\ \triangle = \begin{vmatrix} x^3 - 1 & 0 & x - x^4 \\ 0 & x - x^3 & x^3 - 1 \\ x - x^4 & x^3 - 1 & 0 \end{vmatrix}, \text{then}\)