Step 1: System of Linear Equations
We are given the system of linear equations:
\[
x + 2y + 3z = \alpha \\
4x + 5y + 6z = \beta \\
7x + 8y + 9z = \gamma - 1
\]
The system is consistent for certain values of \( \alpha \), \( \beta \), and \( \gamma \). This means that the system has a solution, and the determinant of the coefficient matrix must be zero for the system to be consistent.
The coefficient matrix is:
\[
A = \begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{bmatrix}
\]
We can find the determinant of this matrix to check the condition for consistency.
Step 2: Determining the Consistency Condition
The determinant of matrix \( A \) is:
\[
|A| = \begin{vmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{vmatrix}
\]
We will expand this determinant using cofactor expansion:
\[
|A| = 1 \times \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \times \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \times \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}
\]
Let's compute the individual 2x2 determinants:
\[
\begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} = (5 \times 9) - (6 \times 8) = 45 - 48 = -3
\]
\[
\begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} = (4 \times 9) - (6 \times 7) = 36 - 42 = -6
\]
\[
\begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix} = (4 \times 8) - (5 \times 7) = 32 - 35 = -3
\]
Now substitute these values back into the cofactor expansion:
\[
|A| = 1 \times (-3) - 2 \times (-6) + 3 \times (-3)
\]
\[
|A| = -3 + 12 - 9 = 0
\]
Since \( |A| = 0 \), this confirms that the system has a non-trivial solution and is consistent. The system of equations forms a homogeneous system.
Step 3: Matrix \( M \) and Determinant Calculation
We are given the matrix:
\[
M = \begin{bmatrix}
\alpha & 2 & \gamma \\
\beta & 1 & 0 \\
-1 & 0 & 1
\end{bmatrix}
\]
We need to compute the determinant of this matrix \( |M| \).
First, substitute the values \( \alpha = 0 \), \( \beta = 0 \), and \( \gamma = 1 \), since the system is consistent when \( \alpha = 0 \), \( \beta = 0 \), and \( \gamma = 1 \). This gives us the matrix:
\[
M = \begin{bmatrix}
0 & 2 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{bmatrix}
\]
Now, compute the determinant of \( M \):
\[
|M| = \begin{vmatrix}
0 & 2 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{vmatrix}
\]
We will expand this determinant using cofactor expansion along the first row:
\[
|M| = 0 \times \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} - 2 \times \begin{vmatrix} 0 & 0 \\ -1 & 1 \end{vmatrix} + 1 \times \begin{vmatrix} 0 & 1 \\ -1 & 0 \end{vmatrix}
\]
Now calculate the 2x2 determinants:
\[
\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1
\]
\[
\begin{vmatrix} 0 & 0 \\ -1 & 1 \end{vmatrix} = (0 \times 1) - (0 \times -1) = 0
\]
\[
\begin{vmatrix} 0 & 1 \\ -1 & 0 \end{vmatrix} = (0 \times 0) - (1 \times -1) = 1
\]
Substitute these values back:
\[
|M| = 0 \times 1 - 2 \times 0 + 1 \times 1 = 1
\]
Thus, the value of \( |M| \) is \( \boxed{1} \).
Let A = \(\begin{bmatrix} \log_5 128 & \log_4 5 \log_5 8 & \log_4 25 \end{bmatrix}\) \). If \(A_{ij}\) is the cofactor of \( a_{ij} \), \( C_{ij} = \sum_{k=1}^2 a_{ik} A_{jk} \), and \( C = [C_{ij}] \), then \( 8|C| \) is equal to:
Sum of the positive roots of the equation: \[ \begin{vmatrix} x^2 + 2x + 2 & x + 2 & 1 \\ 2x + 1 & x - 1 & 1 \\ x + 2 & -1 & 1 \end{vmatrix} = is \; 0. \]
If \( a \neq b \neq c \), then
\[ \Delta_1 = \begin{vmatrix} 1 & a^2 & bc \\ 1 & b^2 & ca \\ 1 & c^2 & ab \end{vmatrix}, \quad \Delta_2 = \begin{vmatrix} 1 & 1 & 1 \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix} \]and
\[ \frac{\Delta_1}{\Delta_2} = \frac{6}{11} \]then what is \( 11(a + b + c) \)?
\[ \textbf{If } | \text{Adj} \ A | = x \text{ and } | \text{Adj} \ B | = y, \text{ then } \left( | \text{Adj}(AB) | \right)^{-1} \text{ is } \]
Let \( A = [a_{ij}] \) be a \( 3 \times 3 \) matrix with positive integers as its elements. The elements of \( A \) are such that the sum of all the elements of each row is equal to 6, and \( a_{22} = 2 \).

Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 