Question:

Let {an}n≥1 be a sequence of real numbers such that \(a_n=\frac{1}{3^n}\) for all n ≥ 1. Then which of the following statements is/are true ?

Updated On: Oct 1, 2024
  • \(\sum^{\infin}_{n=1}(-1)^{n+1}a_n\) is a convergent series
  • \(\sum^{\infin}_{n=1}\frac{(-1)^{n+1}}{n}(a_1+a_2+...+a_n)\) is a convergent series
  • The radius of convergence of the power series \(\sum^{\infin}_{n=1}a_nx^n \text{ is }\frac{1}{3}\)
  • \(\sum^{\infin}_{n=1}a_n\sin\frac{1}{a_n}\) is a convergent series
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A, B, D

Solution and Explanation

The correct option is (A) : \(\sum^{\infin}_{n=1}(-1)^{n+1}a_n\) is a convergent series, (B) : \(\sum^{\infin}_{n=1}\frac{(-1)^{n+1}}{n}(a_1+a_2+...+a_n)\) is a convergent series and (D) : \(\sum^{\infin}_{n=1}a_n\sin\frac{1}{a_n}\) is a convergent series.
Was this answer helpful?
0
0

Questions Asked in IIT JAM MS exam

View More Questions