Question:

Which of the following functions represents a cumulative distribution function?

Updated On: Oct 1, 2024
  • F1(x)={0,if x<π4sinx,if π4x<3π41,if x3π4F_1(x) = \begin{cases} 0, & \text{if } x < \frac{\pi}{4} \\\sin x, & \text{if } \frac{\pi}{4} \leq x < \frac{3\pi}{4} \\1, & \text{if } x \geq \frac{3\pi}{4} \end{cases}
  • F2(x)= { 0,if x<02sinx,if 0x<π41,if xπ4 F_2(x) = \begin{cases} 0, & \text{if } x < 0 \\2 \sin x, & \text{if } 0 \leq x < \frac{\pi}{4} \\1, & \text{if } x \geq \frac{\pi}{4} \end{cases}
  • F3(x)={0,if x<0x,if 0xlt;1313x+13,if 13x<121,if x12F_3(x) = \begin{cases} 0, & \text{if } x < 0 \\x, & \text{if } 0 \leq x lt; \frac{1}{3} \\\frac{1}{3} x + \frac{1}{3}, & \text{if } \frac{1}{3} \leq x < \frac{1}{2} \\1, & \text{if } x \geq \frac{1}{2} \end{cases}
  • F4(x)={0,if x<02sinx,if 0x<π41,if xπ4F_4(x) = \begin{cases} 0, & \text{if } x < 0 \\\sqrt{2} \sin x, & \text{if } 0 \leq x < \frac{\pi}{4} \\1, & \text{if } x \geq \frac{\pi}{4} \end{cases}
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

The correct option is (D): F4(x)={0,if x<02sinx,if 0x<π41,if xπ4F_4(x) = \begin{cases} 0, & \text{if } x < 0 \\\sqrt{2} \sin x, & \text{if } 0 \leq x < \frac{\pi}{4} \\1, & \text{if } x \geq \frac{\pi}{4} \end{cases}
Was this answer helpful?
1
0

Top Questions on Sequences and Series of real numbers

View More Questions

Questions Asked in IIT JAM MS exam

View More Questions