Let \( P(2, 3, 5) \) be the point and \( R(\alpha, \beta, \gamma) \) its mirror image in the line
\[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4}. \]
Since \( R \) is the mirror image of \( P \), the line segment \( PR \) is perpendicular to the direction ratios of the line \( (2, 3, 4) \).
Therefore, \( \overrightarrow{PR} \perp (2, 3, 4) \).
So, \( \overrightarrow{PR} \cdot (2, 3, 4) = 0 \).
Let \( \overrightarrow{PR} = (\alpha - 2, \beta - 3, \gamma - 5) \).
Now,
\[ (\alpha - 2, \beta - 3, \gamma - 5) \cdot (2, 3, 4) = 0 \]
which gives:
\[ 2(\alpha - 2) + 3(\beta - 3) + 4(\gamma - 5) = 0 \] \[ \implies 2\alpha + 3\beta + 4\gamma = 4 + 9 + 20 = 33 \]
Thus, the answer is:
33
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)