To solve the problem, we are given that a vector \( \mathbf{a} \) makes equal angles with all three coordinate axes and has a magnitude of \( 5\sqrt{3} \) units. We need to find the vector \( \mathbf{a} \).
1. Direction Cosines of the Vector:
If a vector makes equal angles with the x-, y-, and z-axes, then its direction cosines are equal. Let the common direction cosine be \( l \).
Since the sum of the squares of direction cosines equals 1:
\[
l^2 + l^2 + l^2 = 1 \Rightarrow 3l^2 = 1 \Rightarrow l^2 = \frac{1}{3} \Rightarrow l = \frac{1}{\sqrt{3}}
\]
2. Unit Vector in Direction of \( \mathbf{a} \):
The unit vector making equal angles with the axes is:
\[
\hat{\mathbf{a}} = \left\langle \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right\rangle
\]
3. Multiply by Magnitude:
We now multiply the unit vector by the magnitude \( 5\sqrt{3} \):
\[
\mathbf{a} = 5\sqrt{3} \cdot \left\langle \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right\rangle = \left\langle 5, 5, 5 \right\rangle
\]
Final Answer:
The vector \( \mathbf{a} \) is \( \boxed{\langle 5, 5, 5 \rangle} \).
If vector \( \mathbf{a} = 3 \hat{i} + 2 \hat{j} - \hat{k} \) \text{ and } \( \mathbf{b} = \hat{i} - \hat{j} + \hat{k} \), then which of the following is correct?
Let \( \vec{a} = 2\hat{i} - 3\hat{j} + \hat{k} \), \( \vec{b} = 3\hat{i} + 2\hat{j} + 5\hat{k} \) and a vector \( \vec{c} \) be such that \[ (\vec{a} - \vec{c}) \times \vec{b} = -18\hat{i} - 3\hat{j} + 12\hat{k} \] and \[ \vec{a} \cdot \vec{c} = 3. \] If \( \vec{b} \times \vec{c} = \vec{d} \), then find \( |\vec{a} \cdot \vec{d}| \).