Given the equation:
\[
16 \sin^6\theta + 16 \cos^6\theta = 10
\]
This can be rewritten using the identity for power of cosines and sines:
\[
16\sin^6\theta + 16(1-\sin^6\theta) = 10
\]
Letting \( x = \sin^2\theta \), we have:
\[
x^3 - 10x + 16 = 0 \Rightarrow x = 2, 8
\]
Thus,
\[
\sin^2\theta = 2, \quad \sin^2\theta = 8 \Rightarrow \sin^2\theta = \frac{1}{4} \left(\sqrt{3}\right)^2
\]
Which gives:
\[
\sin\theta = \frac{1}{2}\sqrt{3} \quad {thus, } \theta = \frac{\pi}{6}
\]
Consider the right triangle with altitude \( h \):
\[
\tan\theta = \frac{h}{\frac{h}{\sqrt{3}}} = \sqrt{3} \Rightarrow \theta = \frac{\pi}{3} { which is } 2\theta
\]
Thus, the correct answer is Option C.