We are given:
\[
x^2 + \sqrt{3}x - 16 = 0 \quad \text{has roots } \alpha, \beta
\]
Define \( P_n = \alpha^n + \beta^n \). Since \( \alpha, \beta \) are roots, the recurrence relation is:
\[
P_n + \sqrt{3}P_{n-1} - 16P_{n-2} = 0
\]
Using the recurrence:
\[
P_{25} + \sqrt{3}P_{24} - 16P_{23} = 0 \Rightarrow \frac{P_{25} + \sqrt{3}P_{24}}{2P_{23}} = \frac{16P_{23}}{2P_{23}} = 8
\]
Similarly, for the second quadratic:
\[
x^2 + 3x - 1 = 0 \quad \text{has roots } \gamma, \delta
\]
Define \( Q_n = \gamma^n + \delta^n \)
We evaluate:
\[
Q_{25} - Q_{23} = \gamma^{25} + \delta^{25} - \gamma^{23} - \delta^{23} = \gamma^{23}(\gamma^2 - 1) + \delta^{23}(\delta^2 - 1)
\]
Since \( \gamma^2 = -3\gamma + 1 \), so:
\[
\gamma^2 - 1 = -3\gamma, \quad \delta^2 - 1 = -3\delta
\Rightarrow Q_{25} - Q_{23} = -3(\gamma^{24} + \delta^{24}) = -3Q_{24}
\]
Therefore:
\[
\frac{Q_{25} - Q_{23}}{Q_{24}} = -3
\]
Now, summing both terms:
\[
\frac{P_{25} + \sqrt{3}P_{24}}{2P_{23}} + \frac{Q_{25} - Q_{23}}{Q_{24}} = 8 - 3 = 5
\]