To solve the problem, we need to find the value of \(\frac{P_{25} + \sqrt{3}P_{24}}{2P_{23}} + \frac{Q_{25} - Q_{23}}{Q_{24}}.\)Here, \( P_n = \alpha^n + \beta^n \) where \( \alpha \) and \( \beta \) are roots of \(x^2 + \sqrt{3}x - 16 = 0\), and \( Q_n = \gamma^n + \delta^n \) where \( \gamma \) and \( \delta \) are roots of \(x^2 + 3x - 1 = 0\).
First, let's compute the relationships using the roots:
By these recurrence relations, certain simplifications can be made for the expressions:
By solving within the derived recurrence relations:
Adding these results together, we have:
\(2 + 3 = 5.\)
Thus, the expression is equal to 5. Therefore, the correct answer is 5.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 