To solve the problem, we need to find the value of \(\frac{P_{25} + \sqrt{3}P_{24}}{2P_{23}} + \frac{Q_{25} - Q_{23}}{Q_{24}}.\)Here, \( P_n = \alpha^n + \beta^n \) where \( \alpha \) and \( \beta \) are roots of \(x^2 + \sqrt{3}x - 16 = 0\), and \( Q_n = \gamma^n + \delta^n \) where \( \gamma \) and \( \delta \) are roots of \(x^2 + 3x - 1 = 0\).
First, let's compute the relationships using the roots:
By these recurrence relations, certain simplifications can be made for the expressions:
By solving within the derived recurrence relations:
Adding these results together, we have:
\(2 + 3 = 5.\)
Thus, the expression is equal to 5. Therefore, the correct answer is 5.
For \( X = (x_1, x_2, x_3)^T \in \mathbb{R}^3 \), consider the quadratic form:
\[ Q(X) = 2x_1^2 + 2x_2^2 + 3x_3^2 + 4x_1x_2 + 2x_1x_3 + 2x_2x_3. \] Let \( M \) be the symmetric matrix associated with the quadratic form \( Q(X) \) with respect to the standard basis of \( \mathbb{R}^3 \).
Let \( Y = (y_1, y_2, y_3)^T \in \mathbb{R}^3 \) be a non-zero vector, and let
\[ a_n = \frac{Y^T(M + I_3)^{n+1}Y}{Y^T(M + I_3)^n Y}, \quad n = 1, 2, 3, \dots \] Then, the value of \( \lim_{n \to \infty} a_n \) is equal to (in integer).
If the given figure shows the graph of polynomial \( y = ax^2 + bx + c \), then:
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
Among the following cations, the number of cations which will give characteristic precipitate in their identification tests with
\(K_4\)[Fe(CN)\(_6\)] is : \[ {Cu}^{2+}, \, {Fe}^{3+}, \, {Ba}^{2+}, \, {Ca}^{2+}, \, {NH}_4^+, \, {Mg}^{2+}, \, {Zn}^{2+} \]