\(\frac {A_4}{r^3}. \frac {A_4}{r} . A_4r . A_4r^3 = \frac {1}{1296}\)
\(A_4 = \frac 16\)
\(A_2 = \frac {7}{36} - \frac 16\)
\(A_2= \frac {1}{36}\)
So, \(A_6 + A_8 + A_{10} = 1 + 6 + 36\)
\(= 43\)
So, the correct option is (C): \(43\)
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
A geometric progression is the sequence, in which each term is varied by another by a common ratio. The next term of the sequence is produced when we multiply a constant to the previous term. It is represented by: a, ar1, ar2, ar3, ar4, and so on.
Important properties of GP are as follows:
If a1, a2, a3,… is a GP of positive terms then log a1, log a2, log a3,… is an AP (arithmetic progression) and vice versa