\(\frac {A_4}{r^3}. \frac {A_4}{r} . A_4r . A_4r^3 = \frac {1}{1296}\)
\(A_4 = \frac 16\)
\(A_2 = \frac {7}{36} - \frac 16\)
\(A_2= \frac {1}{36}\)
So, \(A_6 + A_8 + A_{10} = 1 + 6 + 36\)
\(= 43\)
So, the correct option is (C): \(43\)
Let \( y^2 = 12x \) be the parabola and \( S \) its focus. Let \( PQ \) be a focal chord of the parabola such that \( (SP)(SQ) = \frac{147}{4} \). Let \( C \) be the circle described by taking \( PQ \) as a diameter. If the equation of the circle \( C \) is: \[ 64x^2 + 64y^2 - \alpha x - 64\sqrt{3}y = \beta, \] then \( \beta - \alpha \) is equal to:
The expression given below shows the variation of velocity \( v \) with time \( t \): \[ v = \frac{At^2 + Bt}{C + t} \] The dimension of \( A \), \( B \), and \( C \) is:
The dimensions of a physical quantity \( \epsilon_0 \frac{d\Phi_E}{dt} \) are similar to [Symbols have their usual meanings]

A geometric progression is the sequence, in which each term is varied by another by a common ratio. The next term of the sequence is produced when we multiply a constant to the previous term. It is represented by: a, ar1, ar2, ar3, ar4, and so on.
Important properties of GP are as follows:
If a1, a2, a3,… is a GP of positive terms then log a1, log a2, log a3,… is an AP (arithmetic progression) and vice versa