To determine whether the statements (S1) and (S2) about the triangle \( \triangle ABC \) are true, we proceed as follows:
Step 1: Find point A
Point A \((x, y, z)\) is equidistant from points \((0, 3, 2)\), \((2, 0, 3)\), \((0, 0, 1)\).
Distance from A to \( (0, 3, 2) \): \(\sqrt{x^2 + (y - 3)^2 + (z - 2)^2}\)
Distance from A to \( (2, 0, 3) \): \(\sqrt{(x - 2)^2 + y^2 + (z - 3)^2}\)
Distance from A to \( (0, 0, 1) \): \(\sqrt{x^2 + y^2 + (z - 1)^2}\)
Set these distances equal and solve:
\(\begin{align*} &x^2 + (y-3)^2 + (z-2)^2 = (x-2)^2 + y^2 + (z-3)^2, \\ &x^2 + (y-3)^2 + (z-2)^2 = x^2 + y^2 + (z-1)^2. \end{align*}\)
Solving these, we obtain \(x = 1\), \(y = 1\), \(z = 1\). Hence, \(A(1, 1, 1)\).
Step 2: Check if \(\triangle ABC\) is isosceles right-angled
Calculate distances \(AB\), \(BC\), and \(CA\):
\(AB = \sqrt{(1-1)^2 + (1-4)^2 + (1+1)^2} = \sqrt{0 + 9 + 4} = \sqrt{13}\)
\(BC = \sqrt{(1-2)^2 + (4-0)^2 + (-1+2)^2} = \sqrt{1 + 16 + 1} = \sqrt{18}\)
\(CA = \sqrt{(2-1)^2 + (0-1)^2 + (-2-1)^2} = \sqrt{1 + 1 + 9} = \sqrt{11}\)
The triangle cannot be isosceles or a right-angled triangle as no two sides are equal and no relation satisfies Pythagoras' theorem. Thus, (S1) is false.
Step 3: Calculate area of \(\triangle ABC\)
Use the formula for the area of a triangle given vertices:\(A\left(1,1,1\right)\), \(B\left(1,4,-1\right)\), \(C\left(2,0,-2\right)\).
The area, \( \text{Area} = \frac{1}{2}\sqrt{|\begin{vmatrix} 1&1&1\\ 1&4&-1\\ 2&0&-2 \end{vmatrix}|}\)
Evaluate the determinant:
\(= \frac{1}{2}|\begin{vmatrix} 1 & 1 & 1 \\ 1 & 4 & -1 \\ 2 & 0 & -2 \end{vmatrix}|\)
\(= \frac{1}{2} |-1(4+0) + 1(1 + 2) - 1(0 - 8)|\)
\(= \frac{1}{2} | -4 + 3 + 8|\)
\(= \frac{1}{2} |7| = \frac{7}{2}\)
The area of triangle ABC is \( \frac{7}{2} \), not \(\frac{9\sqrt{2}}{2}\). So, (S2) is false.
Conclusion
Both statements (S1) and (S2) are false.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is