To determine whether the statements (S1) and (S2) about the triangle \( \triangle ABC \) are true, we proceed as follows:
Step 1: Find point A
Point A \((x, y, z)\) is equidistant from points \((0, 3, 2)\), \((2, 0, 3)\), \((0, 0, 1)\).
Distance from A to \( (0, 3, 2) \): \(\sqrt{x^2 + (y - 3)^2 + (z - 2)^2}\)
Distance from A to \( (2, 0, 3) \): \(\sqrt{(x - 2)^2 + y^2 + (z - 3)^2}\)
Distance from A to \( (0, 0, 1) \): \(\sqrt{x^2 + y^2 + (z - 1)^2}\)
Set these distances equal and solve:
\(\begin{align*} &x^2 + (y-3)^2 + (z-2)^2 = (x-2)^2 + y^2 + (z-3)^2, \\ &x^2 + (y-3)^2 + (z-2)^2 = x^2 + y^2 + (z-1)^2. \end{align*}\)
Solving these, we obtain \(x = 1\), \(y = 1\), \(z = 1\). Hence, \(A(1, 1, 1)\).
Step 2: Check if \(\triangle ABC\) is isosceles right-angled
Calculate distances \(AB\), \(BC\), and \(CA\):
\(AB = \sqrt{(1-1)^2 + (1-4)^2 + (1+1)^2} = \sqrt{0 + 9 + 4} = \sqrt{13}\)
\(BC = \sqrt{(1-2)^2 + (4-0)^2 + (-1+2)^2} = \sqrt{1 + 16 + 1} = \sqrt{18}\)
\(CA = \sqrt{(2-1)^2 + (0-1)^2 + (-2-1)^2} = \sqrt{1 + 1 + 9} = \sqrt{11}\)
The triangle cannot be isosceles or a right-angled triangle as no two sides are equal and no relation satisfies Pythagoras' theorem. Thus, (S1) is false.
Step 3: Calculate area of \(\triangle ABC\)
Use the formula for the area of a triangle given vertices:\(A\left(1,1,1\right)\), \(B\left(1,4,-1\right)\), \(C\left(2,0,-2\right)\).
The area, \( \text{Area} = \frac{1}{2}\sqrt{|\begin{vmatrix} 1&1&1\\ 1&4&-1\\ 2&0&-2 \end{vmatrix}|}\)
Evaluate the determinant:
\(= \frac{1}{2}|\begin{vmatrix} 1 & 1 & 1 \\ 1 & 4 & -1 \\ 2 & 0 & -2 \end{vmatrix}|\)
\(= \frac{1}{2} |-1(4+0) + 1(1 + 2) - 1(0 - 8)|\)
\(= \frac{1}{2} | -4 + 3 + 8|\)
\(= \frac{1}{2} |7| = \frac{7}{2}\)
The area of triangle ABC is \( \frac{7}{2} \), not \(\frac{9\sqrt{2}}{2}\). So, (S2) is false.
Conclusion
Both statements (S1) and (S2) are false.
Let \( y = y(x) \) be the solution of the differential equation \[ 2\cos x \frac{dy}{dx} = \sin 2x - 4y \sin x, \quad x \in \left( 0, \frac{\pi}{2} \right). \]
If \( y\left( \frac{\pi}{3} \right) = 0 \), then \( y\left( \frac{\pi}{4} \right) + y\left( \frac{\pi}{4} \right) \) is equal to ________.
Let \( C_{t-1} = 28, C_t = 56 \) and \( C_{t+1} = 70 \). Let \( A(4 \cos t, 4 \sin t), B(2 \sin t, -2 \cos t) \text{ and } C(3r - n_1, r^2 - n - 1) \) be the vertices of a triangle ABC, where \( t \) is a parameter. If \( (3x - 1)^2 + (3y)^2 = \alpha \) is the locus of the centroid of triangle ABC, then \( \alpha \) equals:
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to:
Let \( \alpha, \beta \) be the roots of the equation \( x^2 - ax - b = 0 \) with \( \text{Im}(\alpha) < \text{Im}(\beta) \). Let \( P_n = \alpha^n - \beta^n \). If \[ P_3 = -5\sqrt{7}, \quad P_4 = -3\sqrt{7}, \quad P_5 = 11\sqrt{7}, \quad P_6 = 45\sqrt{7}, \] then \( |\alpha^4 + \beta^4| \) is equal to: