We know that $A = I_2 - MM^T$ and $M^TM = I_1$, which implies that $M$ is a unit vector. The matrix $A$ is a projection matrix, and for a projection matrix, the eigenvalues are either 0 or 1.
In this case, the eigenvalue $\lambda$ of $A$ can be either 0 or 1. Therefore, the sum of squares of all possible values of $\lambda$ is:
$0^2 + 1^2 = 1 + 1 = 2.$
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
