Question:

Let A=[3725]\begin{bmatrix}3&7\\2&5\end{bmatrix}and B=[6879]\begin{bmatrix}6&8\\7&9\end{bmatrix},Verify that (AB)-1=B-1A-1.

Updated On: Aug 28, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Let A=[3725]\begin{bmatrix}3&7\\2&5\end{bmatrix}

we have IAI=15-14=1

Now,A11=5 ,A12=-2, A21=-7, A22=3

therefore adj A=[5723]\begin{bmatrix}5&-7\\-2&3\end{bmatrix}

therefore A-1=1A\frac{1}{\mid A\mid}.adj A=[5723]\begin{bmatrix}5&-7\\-2&3\end{bmatrix}

Now let B=[6879]\begin{bmatrix}6&8\\7&9\end{bmatrix}

we have IBI=54-56=-2

so adj B=[9876]\begin{bmatrix}9&-8\\-7&6\end{bmatrix}

therefore B-1=1B\frac{1}{\mid B\mid} adj B=127-\frac{1}{27}[9876]\begin{bmatrix}9&-8\\-7&6\end{bmatrix}
=[974723]\begin{bmatrix}-\frac{9}{7}&4\\\frac{7}{2}&-3\end{bmatrix}

Now,B-1 A-1=[974723]\begin{bmatrix}-\frac{9}{7}&4\\\frac{7}{2}&-3\end{bmatrix}[5723]\begin{bmatrix}5&-7\\-2&3\end{bmatrix}

=[4528632+12352+64929]\begin{bmatrix}-\frac{45}{2}-8&\frac{63}{2}+12\\\frac{35}{2}+6&-\frac{49}{2}-9\end{bmatrix}

=[612872472672]\begin{bmatrix}-\frac{61}{2}&\frac{87}{2}\\\frac{47}{2}&-\frac{67}{2}\end{bmatrix}...(1)

Then ,AB=[3725]\begin{bmatrix}3&7\\2&5\end{bmatrix}[6879]\begin{bmatrix}6&8\\7&9\end{bmatrix}

=[18+4924+6312+3516+45]\begin{bmatrix}18+49&24+63\\12+35&16+45\end{bmatrix}

=[67874761]\begin{bmatrix}67&87\\47&61\end{bmatrix}

therefore we have IABI=67x61-87x47=4087-4089=-2
Also adj(AB)=[61874767]\begin{bmatrix}61&-87\\-47&67\end{bmatrix}

therefore (AB)-1=1AB\frac{1}{\mid AB\mid}adj AB=12-\frac{1}{2}[61874767]\begin{bmatrix}61&-87\\-47&67\end{bmatrix}

=[612872472672]\begin{bmatrix}-\frac{61}{2}&\frac{87}{2}\\\frac{47}{2}&-\frac{67}{2}\end{bmatrix}  ....(2)

From (1) and (2), we have:
(AB)-1 = B-1 A-1

Hence, the given result is proved
 

Was this answer helpful?
0
0

Top Questions on Determinants

View More Questions