Let A=\(\begin{bmatrix}3&7\\2&5\end{bmatrix}\)and B=\(\begin{bmatrix}6&8\\7&9\end{bmatrix}\),Verify that (AB)-1=B-1A-1.
Let A=\(\begin{bmatrix}3&7\\2&5\end{bmatrix}\)
we have IAI=15-14=1
Now,A11=5 ,A12=-2, A21=-7, A22=3
therefore adj A=\(\begin{bmatrix}5&-7\\-2&3\end{bmatrix}\)
therefore A-1=\(\frac{1}{\mid A\mid}\).adj A=\(\begin{bmatrix}5&-7\\-2&3\end{bmatrix}\)
Now let B=\(\begin{bmatrix}6&8\\7&9\end{bmatrix}\)
we have IBI=54-56=-2
so adj B=\(\begin{bmatrix}9&-8\\-7&6\end{bmatrix}\)
therefore B-1=\(\frac{1}{\mid B\mid}\) adj B=\(-\frac{1}{27}\)\(\begin{bmatrix}9&-8\\-7&6\end{bmatrix}\)
=\(\begin{bmatrix}-\frac{9}{7}&4\\\frac{7}{2}&-3\end{bmatrix}\)
Now,B-1 A-1=\(\begin{bmatrix}-\frac{9}{7}&4\\\frac{7}{2}&-3\end{bmatrix}\)\(\begin{bmatrix}5&-7\\-2&3\end{bmatrix}\)
=\(\begin{bmatrix}-\frac{45}{2}-8&\frac{63}{2}+12\\\frac{35}{2}+6&-\frac{49}{2}-9\end{bmatrix}\)
=\(\begin{bmatrix}-\frac{61}{2}&\frac{87}{2}\\\frac{47}{2}&-\frac{67}{2}\end{bmatrix}\)...(1)
Then ,AB=\(\begin{bmatrix}3&7\\2&5\end{bmatrix}\)\(\begin{bmatrix}6&8\\7&9\end{bmatrix}\)
=\(\begin{bmatrix}18+49&24+63\\12+35&16+45\end{bmatrix}\)
=\(\begin{bmatrix}67&87\\47&61\end{bmatrix}\)
therefore we have IABI=67x61-87x47=4087-4089=-2
Also adj(AB)=\(\begin{bmatrix}61&-87\\-47&67\end{bmatrix}\)
therefore (AB)-1=\(\frac{1}{\mid AB\mid}\)adj AB=\(-\frac{1}{2}\)\(\begin{bmatrix}61&-87\\-47&67\end{bmatrix}\)
=\(\begin{bmatrix}-\frac{61}{2}&\frac{87}{2}\\\frac{47}{2}&-\frac{67}{2}\end{bmatrix}\) ....(2)
From (1) and (2), we have:
(AB)-1 = B-1 A-1
Hence, the given result is proved
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: