Question:

Let A=\(\begin{bmatrix}3&7\\2&5\end{bmatrix}\)and B=\(\begin{bmatrix}6&8\\7&9\end{bmatrix}\),Verify that (AB)-1=B-1A-1.

Updated On: Aug 28, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Let A=\(\begin{bmatrix}3&7\\2&5\end{bmatrix}\)

we have IAI=15-14=1

Now,A11=5 ,A12=-2, A21=-7, A22=3

therefore adj A=\(\begin{bmatrix}5&-7\\-2&3\end{bmatrix}\)

therefore A-1=\(\frac{1}{\mid A\mid}\).adj A=\(\begin{bmatrix}5&-7\\-2&3\end{bmatrix}\)

Now let B=\(\begin{bmatrix}6&8\\7&9\end{bmatrix}\)

we have IBI=54-56=-2

so adj B=\(\begin{bmatrix}9&-8\\-7&6\end{bmatrix}\)

therefore B-1=\(\frac{1}{\mid B\mid}\) adj B=\(-\frac{1}{27}\)\(\begin{bmatrix}9&-8\\-7&6\end{bmatrix}\)
=\(\begin{bmatrix}-\frac{9}{7}&4\\\frac{7}{2}&-3\end{bmatrix}\)

Now,B-1 A-1=\(\begin{bmatrix}-\frac{9}{7}&4\\\frac{7}{2}&-3\end{bmatrix}\)\(\begin{bmatrix}5&-7\\-2&3\end{bmatrix}\)

=\(\begin{bmatrix}-\frac{45}{2}-8&\frac{63}{2}+12\\\frac{35}{2}+6&-\frac{49}{2}-9\end{bmatrix}\)

=\(\begin{bmatrix}-\frac{61}{2}&\frac{87}{2}\\\frac{47}{2}&-\frac{67}{2}\end{bmatrix}\)...(1)

Then ,AB=\(\begin{bmatrix}3&7\\2&5\end{bmatrix}\)\(\begin{bmatrix}6&8\\7&9\end{bmatrix}\)

=\(\begin{bmatrix}18+49&24+63\\12+35&16+45\end{bmatrix}\)

=\(\begin{bmatrix}67&87\\47&61\end{bmatrix}\)

therefore we have IABI=67x61-87x47=4087-4089=-2
Also adj(AB)=\(\begin{bmatrix}61&-87\\-47&67\end{bmatrix}\)

therefore (AB)-1=\(\frac{1}{\mid AB\mid}\)adj AB=\(-\frac{1}{2}\)\(\begin{bmatrix}61&-87\\-47&67\end{bmatrix}\)

=\(\begin{bmatrix}-\frac{61}{2}&\frac{87}{2}\\\frac{47}{2}&-\frac{67}{2}\end{bmatrix}\)  ....(2)

From (1) and (2), we have:
(AB)-1 = B-1 A-1

Hence, the given result is proved
 

Was this answer helpful?
0
0