The matrix equation \( AX = B \) can be solved by substituting each option for \( X \) and checking if the equation holds.
Compute \( AX \) for \( X = \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} \): \[ A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix}, \quad X = \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix}. \]
Perform the matrix multiplication: \[ AX = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} (1)(4) + (-1)(2) + (0)(1) \\ (0)(4) + (1)(2) + (-1)(1) \\ (1)(4) + (1)(2) + (1)(1) \end{bmatrix}. \]
Simplify the resulting vector: \[ AX = \begin{bmatrix} 4 - 2 + 0 \\ 0 + 2 - 1 \\ 4 + 2 + 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 7 \end{bmatrix}. \]
Since \( AX = B \), the solution \( X = \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} \) is valid.
Thus, the correct answer is (D).
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to:

A quantity \( X \) is given by: \[ X = \frac{\epsilon_0 L \Delta V}{\Delta t} \] where:
- \( \epsilon_0 \) is the permittivity of free space,
- \( L \) is the length,
- \( \Delta V \) is the potential difference,
- \( \Delta t \) is the time interval.
The dimension of \( X \) is the same as that of: