1. Compute \( A^2 \):
\[ A^2 = A \cdot A = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}. \]
2. Perform matrix multiplication:
\[ A^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I, \]
where \( I \) is the identity matrix.
3. Since \( A^2 = I \), this confirms the property \( A^2 = I \). The other options are incorrect: