In the expansion of \[ \left( \sqrt[3]{2} + \frac{1}{\sqrt[3]{3}} \right)^n , \, n \in \mathbb{N}, \] if the ratio of the 15th term from the beginning to the 15th term from the end is \[ \frac{1}{6}, \] then the value of \[ {}^nC_3 \] is:
We expand \( \left( \sqrt[3]{2} + \dfrac{1}{\sqrt[3]{3}} \right)^{n} \) and are told that the ratio of the 15th term from the beginning to the 15th term from the end is \( \dfrac{1}{6} \). We must find \( \binom{n}{3} \).
The \((r+1)\)th term of \((a+b)^n\) is \( T_{r+1}=\binom{n}{r} a^{\,n-r} b^{\,r} \). Also, the \(k\)th term from the end equals the \((n+2-k)\)th term from the beginning.
Step 1: Write the 15th term from the beginning \((r=14)\):
\[ T_{\text{beg}}=\binom{n}{14}\left(\sqrt[3]{2}\right)^{n-14}\left(\frac{1}{\sqrt[3]{3}}\right)^{14} =\binom{n}{14}\,2^{\frac{n-14}{3}}\,3^{-\frac{14}{3}}. \]Step 2: Write the 15th term from the end, which is the \((n-13)\)th from the beginning \((r=n-14)\):
\[ T_{\text{end}}=\binom{n}{14}\left(\sqrt[3]{2}\right)^{14}\left(\frac{1}{\sqrt[3]{3}}\right)^{n-14} =\binom{n}{14}\,2^{\frac{14}{3}}\,3^{-\frac{n-14}{3}}. \]Step 3: Form the given ratio and solve for \(n\):
\[ \frac{T_{\text{beg}}}{T_{\text{end}}} =\frac{2^{\frac{n-14}{3}}\,3^{-\frac{14}{3}}}{2^{\frac{14}{3}}\,3^{-\frac{n-14}{3}}} =2^{\frac{n-28}{3}}\,3^{\frac{n-28}{3}} =\left(2\cdot 3\right)^{\frac{n-28}{3}} =6^{\frac{n-28}{3}}. \] Given \( \dfrac{T_{\text{beg}}}{T_{\text{end}}}=\dfrac{1}{6}=6^{-1} \), hence \[ 6^{\frac{n-28}{3}}=6^{-1}\ \Rightarrow\ \frac{n-28}{3}=-1 \ \Rightarrow\ n=25. \]Step 4: Compute \( \binom{n}{3} \) for \( n=25 \):
\[ \binom{25}{3}=\frac{25\cdot 24\cdot 23}{3\cdot 2\cdot 1} =25\cdot 4\cdot 23=2300. \]The required value is 2300.
\[ \left( \frac{1}{{}^{15}C_0} + \frac{1}{{}^{15}C_1} \right) \left( \frac{1}{{}^{15}C_1} + \frac{1}{{}^{15}C_2} \right) \cdots \left( \frac{1}{{}^{15}C_{12}} + \frac{1}{{}^{15}C_{13}} \right) = \frac{\alpha^{13}}{{}^{14}C_0 \, {}^{14}C_1 \cdots {}^{14}C_{12}} \]
Then \[ 30\alpha = \underline{\hspace{1cm}} \]
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.