In the expansion of \[ \left( \sqrt[3]{2} + \frac{1}{\sqrt[3]{3}} \right)^n , \, n \in \mathbb{N}, \] if the ratio of the 15th term from the beginning to the 15th term from the end is \[ \frac{1}{6}, \] then the value of \[ {}^nC_3 \] is:
We expand \( \left( \sqrt[3]{2} + \dfrac{1}{\sqrt[3]{3}} \right)^{n} \) and are told that the ratio of the 15th term from the beginning to the 15th term from the end is \( \dfrac{1}{6} \). We must find \( \binom{n}{3} \).
The \((r+1)\)th term of \((a+b)^n\) is \( T_{r+1}=\binom{n}{r} a^{\,n-r} b^{\,r} \). Also, the \(k\)th term from the end equals the \((n+2-k)\)th term from the beginning.
Step 1: Write the 15th term from the beginning \((r=14)\):
\[ T_{\text{beg}}=\binom{n}{14}\left(\sqrt[3]{2}\right)^{n-14}\left(\frac{1}{\sqrt[3]{3}}\right)^{14} =\binom{n}{14}\,2^{\frac{n-14}{3}}\,3^{-\frac{14}{3}}. \]Step 2: Write the 15th term from the end, which is the \((n-13)\)th from the beginning \((r=n-14)\):
\[ T_{\text{end}}=\binom{n}{14}\left(\sqrt[3]{2}\right)^{14}\left(\frac{1}{\sqrt[3]{3}}\right)^{n-14} =\binom{n}{14}\,2^{\frac{14}{3}}\,3^{-\frac{n-14}{3}}. \]Step 3: Form the given ratio and solve for \(n\):
\[ \frac{T_{\text{beg}}}{T_{\text{end}}} =\frac{2^{\frac{n-14}{3}}\,3^{-\frac{14}{3}}}{2^{\frac{14}{3}}\,3^{-\frac{n-14}{3}}} =2^{\frac{n-28}{3}}\,3^{\frac{n-28}{3}} =\left(2\cdot 3\right)^{\frac{n-28}{3}} =6^{\frac{n-28}{3}}. \] Given \( \dfrac{T_{\text{beg}}}{T_{\text{end}}}=\dfrac{1}{6}=6^{-1} \), hence \[ 6^{\frac{n-28}{3}}=6^{-1}\ \Rightarrow\ \frac{n-28}{3}=-1 \ \Rightarrow\ n=25. \]Step 4: Compute \( \binom{n}{3} \) for \( n=25 \):
\[ \binom{25}{3}=\frac{25\cdot 24\cdot 23}{3\cdot 2\cdot 1} =25\cdot 4\cdot 23=2300. \]The required value is 2300.
Let $ (1 + x + x^2)^{10} = a_0 + a_1 x + a_2 x^2 + ... + a_{20} x^{20} $. If $ (a_1 + a_3 + a_5 + ... + a_{19}) - 11a_2 = 121k $, then k is equal to _______
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is:
A thin transparent film with refractive index 1.4 is held on a circular ring of radius 1.8 cm. The fluid in the film evaporates such that transmission through the film at wavelength 560 nm goes to a minimum every 12 seconds. Assuming that the film is flat on its two sides, the rate of evaporation is:
The major product (A) formed in the following reaction sequence is
