We are given a \(2 \times 2\) matrix \(A\) whose eigenvalues are \(-1\) and \(3\). We aim to determine the sum of the diagonal elements of \(A^2\), which is equivalent to the trace of \(A^2\).
The eigenvalues of a matrix provide useful information:  
- The sum of the eigenvalues is equal to the trace of the matrix \(A\):  
 \(\text{Sum of roots (eigenvalues)} = \text{tr}(A) = -1 + 3 = 2.\)
- The product of the eigenvalues is equal to the determinant of the matrix \(A\):  
 \(\text{Product of roots (eigenvalues)} = |\det(A)| = (-1)(3) = -3.\)
Thus, the matrix \(A\) satisfies:  
\(a + d = 2, \quad ad - bc = -3,\)
where \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}\).
The trace of a matrix is the sum of its diagonal elements. For \(A^2\), the trace is:  
\(\text{tr}(A^2) = (A^2)_{11} + (A^2)_{22}.\)
Using matrix multiplication, compute \(A^2\): 
\(A^2 = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^2 = \begin{bmatrix} a^2 + bc & ab + bd \\ ac + cd & d^2 + bc \end{bmatrix}.\)
The diagonal elements of \(A^2\) are:  
\((A^2)_{11} = a^2 + bc, \quad (A^2)_{22} = d^2 + bc.\)
Thus, the trace of \(A^2\) is:  
\(\text{tr}(A^2) = (A^2)_{11} + (A^2)_{22} = a^2 + bc + d^2 + bc = a^2 + d^2 + 2bc.\)
Using the properties of the matrix:
The trace of \(A\) is \(a + d = 2\). From this, express \(a^2 + d^2\) using the square of the sum:  
\((a + d)^2 = a^2 + d^2 + 2ad \implies a^2 + d^2 = (a + d)^2 - 2ad.\)
Substitute \(a + d = 2\):
\(a^2 + d^2 = 2^2 - 2ad = 4 - 2ad.\)
The determinant of \(A\) is \(ad - bc = -3\), which implies:  
\(ad = -3 + bc.\)
Substitute \(ad = -3 + bc\) into \(a^2 + d^2\):  
\(a^2 + d^2 = 4 - 2(-3 + bc) = 4 + 6 - 2bc = 10 - 2bc.\)
Thus:  
\(\text{tr}(A^2) = a^2 + d^2 + 2bc = (10 - 2bc) + 2bc = 10.\)
The Correct answer is: 10
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81. 
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
Let \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} , \ \alpha > 0 \), such that \( \det(A) = 0 \) and \( \alpha + \beta = 1. \) If \( I \) denotes the \( 2 \times 2 \) identity matrix, then the matrix \( (I + A)^8 \) is:
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:

Two cells of emf 1V and 2V and internal resistance 2 \( \Omega \) and 1 \( \Omega \), respectively, are connected in series with an external resistance of 6 \( \Omega \). The total current in the circuit is \( I_1 \). Now the same two cells in parallel configuration are connected to the same external resistance. In this case, the total current drawn is \( I_2 \). The value of \( \left( \frac{I_1}{I_2} \right) \) is \( \frac{x}{3} \). The value of x is 1cm.
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is: