The correct option is (B) : 2
Given : Relation det ((A + I)(adj(A) + I)) = 4 , det (A) = -1,
Then, adj A = -A-1
| (A + I )A-1 + I | = 4
| -I + A - A-1 + I | =4
| A - A-1 | = 4
Let A \(=\begin{bmatrix} a & b \\ c & d \end{bmatrix} \) then A-1 = \(\begin{bmatrix} -d & b \\ c & -a \end{bmatrix}\)
| A - A-1 | = \(\begin{bmatrix} a+d & 0 \\ 0 & d+a \end{bmatrix}=4\)
(a + d)2 = 4
⇒ a + d = ± 2
⇒ | a + d | = 2
If the domain of the function \( f(x) = \frac{1}{\sqrt{3x + 10 - x^2}} + \frac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \( (1 + a)^2 + b^2 \) is equal to:
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.