The correct option is (B) : 2
Given : Relation det ((A + I)(adj(A) + I)) = 4 , det (A) = -1,
Then, adj A = -A-1
| (A + I )A-1 + I | = 4
| -I + A - A-1 + I | =4
| A - A-1 | = 4
Let A \(=\begin{bmatrix} a & b \\ c & d \end{bmatrix} \) then A-1 = \(\begin{bmatrix} -d & b \\ c & -a \end{bmatrix}\)
| A - A-1 | = \(\begin{bmatrix} a+d & 0 \\ 0 & d+a \end{bmatrix}=4\)
(a + d)2 = 4
⇒ a + d = ± 2
⇒ | a + d | = 2
Let \[ f(x)=\int \frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2}\,dx \] and $f(1)=\frac14$. Given that 
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.
