\(-1\)
\(2\)
\(1\)
\(-\sqrt 2\)
\(|(A+I)(adj\ A+I)|=4\)
\(⇒|A\ adj\ A +A+adj \ A+I|=4\)
\(⇒|(A)I+A+adj\ A+I|=4\)
\(|A|=−1\)
\(⇒|A+adj\ A|=4\)
\(A=\begin{bmatrix} a & b\\[0.3em] c & d \\[0.3em] \end{bmatrix}\)
\(adj A=\begin{bmatrix} a & -b\\[0.3em] -c & d \\[0.3em] \end{bmatrix}\)
\(⇒ \begin{bmatrix} (a+d) & b\\[0.3em] 0 & (a+d) \\[0.3em] \end{bmatrix}=4\)
\(⇒ a + d = ±2\)
So, the correct option is (B): \(2\)
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.