Let \( \bar{a}, \bar{b}, \bar{c} \) be three vectors each having \( \sqrt{2} \) magnitude such that
\[ (\bar{a}, \bar{b}) = (\bar{b}, \bar{c}) = (\bar{c}, \bar{a}) = \frac{\pi}{3}. \]
If
\[ \bar{x} = \bar{a} \times (\bar{b} \times \bar{c}) \quad \text{and} \quad \bar{y} = \bar{b} \times (\bar{c} \times \bar{a}), \]
then:
\( |\bar{x}| = |\bar{y}| \)
\( |\bar{x}| = \sqrt{2} |\bar{y}| \)
(3) \( |\bar{x}| = 2 |\bar{y}| \)
\( |\bar{x}| + |\bar{y}| = 2 \)
The vectors \( \bar{a}, \bar{b}, \bar{c} \) are given with magnitudes:
\[ |\bar{a}| = |\bar{b}| = |\bar{c}| = \sqrt{2}. \]
Also, the angle between each pair is:
\[ (\bar{a}, \bar{b}) = (\bar{b}, \bar{c}) = (\bar{c}, \bar{a}) = \frac{\pi}{3}. \]
Using the vector triple product identity:
\[ \bar{x} = \bar{a} \times (\bar{b} \times \bar{c}) = (\bar{a} \cdot \bar{c}) \bar{b} - (\bar{a} \cdot \bar{b}) \bar{c}. \]
Similarly,
\[ \bar{y} = \bar{b} \times (\bar{c} \times \bar{a}) = (\bar{b} \cdot \bar{a}) \bar{c} - (\bar{b} \cdot \bar{c}) \bar{a}. \]
Since
\[ (\bar{a} \cdot \bar{b}) = (\bar{b} \cdot \bar{c}) = (\bar{c} \cdot \bar{a}) = \sqrt{2} \cdot \sqrt{2} \cos\frac{\pi}{3} = 2 \times \frac{1}{2} = 1, \]
we have:
\[ |\bar{x}|^2 = |\bar{y}|^2. \]
Taking square roots:
\[ |\bar{x}| = |\bar{y}|. \]
Thus, we conclude:
\[ \boxed{|\bar{x}| = |\bar{y}|}. \]
The potential difference \( V \) across the filament of the bulb shown in the given Wheatstone bridge varies as \( V = i(2i + 1) \), where \( i \) is the current in ampere through the filament of the bulb. The emf of the battery (\( V_a \)) so that the bridge becomes balanced is: