Let $A$ and $B$ be two distinct points on the line $L: \frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2}$. Both $A$ and $B$ are at a distance $2\sqrt{17}$ from the foot of perpendicular drawn from the point $(1, 2, 3)$ on the line $L$. If $O$ is the origin, then $\overrightarrow{OA} \cdot \overrightarrow{OB}$ is equal to:
We have the line \(L: \dfrac{x-6}{3}=\dfrac{y-7}{2}=\dfrac{z-7}{-2}\). Let its parametric form be \(\vec{r}(t)=\vec{a}+t\vec{d}\), where \(\vec{a}=(6,7,7)\) and \(\vec{d}=(3,2,-2)\). A point \(P=(1,2,3)\) drops a perpendicular to \(L\) at foot \(F\). Points \(A,B\in L\) are each at distance \(2\sqrt{17}\) from \(F\). We need \(\overrightarrow{OA}\cdot \overrightarrow{OB}\).
The foot \(F\) of the perpendicular from \(P\) to the line \(\vec{r}(t)=\vec{a}+t\vec{d}\) occurs at parameter
\[ t_0=\frac{\vec{d}\cdot(\vec{P}-\vec{a})}{\vec{d}\cdot \vec{d}}. \]
Moving a distance \(s\) along the line changes the parameter by \(\Delta t=\dfrac{s}{\|\vec{d}\|}\). If \(A,B\) are at distance \(2\sqrt{17}\) from \(F\), then \(|\Delta t|=\dfrac{2\sqrt{17}}{\|\vec{d}\|}\).
Step 1: Find the foot parameter \(t_0\).
\[ \vec{d}=(3,2,-2),\quad \vec{a}=(6,7,7),\quad \vec{P}-\vec{a}=(1-6,\,2-7,\,3-7)=(-5,-5,-4). \] \[ \vec{d}\cdot(\vec{P}-\vec{a})=3(-5)+2(-5)+(-2)(-4)=-15-10+8=-17,\quad \vec{d}\cdot\vec{d}=3^2+2^2+(-2)^2=9+4+4=17. \] \[ t_0=\frac{-17}{17}=-1. \]
Thus the foot \(F=\vec{r}(t_0)=\vec{a}+(-1)\vec{d}=(6,7,7)-(3,2,-2)=(3,5,9).\)
Step 2: Determine the parameters for \(A\) and \(B\).
\[ \|\vec{d}\|=\sqrt{17},\quad s=2\sqrt{17}\ \Rightarrow\ |\Delta t|=\frac{2\sqrt{17}}{\sqrt{17}}=2. \] \[ t_A=t_0+2=-1+2=1,\qquad t_B=t_0-2=-1-2=-3. \]
Step 3: Compute \(A=\vec{r}(1)\) and \(B=\vec{r}(-3)\).
\[ A=\vec{a}+1\cdot\vec{d}=(6,7,7)+(3,2,-2)=(9,9,5), \] \[ B=\vec{a}+(-3)\vec{d}=(6,7,7)+(-9,-6,6)=(-3,1,13). \]
Step 4: Compute the dot product \(\overrightarrow{OA}\cdot\overrightarrow{OB}=A\cdot B\).
\[ A\cdot B=(9,9,5)\cdot(-3,1,13)=9(-3)+9(1)+5(13)=-27+9+65=47. \]
\(\overrightarrow{OA}\cdot \overrightarrow{OB}=47\).
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
