Question:

Let $A$ and $B$ be two distinct points on the line $L: \frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2}$. Both $A$ and $B$ are at a distance $2\sqrt{17}$ from the foot of perpendicular drawn from the point $(1, 2, 3)$ on the line $L$. If $O$ is the origin, then $\overrightarrow{OA} \cdot \overrightarrow{OB}$ is equal to:

Show Hint

Use the distance formula to find the points on the line.
Updated On: Apr 24, 2025
  • 49
  • 47
  • 21
  • 62
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

1. Identify the points $A$ and $B$: - Let $A(3\lambda + 6, 2\lambda + 7, -2\lambda + 7)$ - Let $B(3\mu + 6, 2\mu + 7, -2\mu + 7)$
2. Distance from the point $(1, 2, 3)$ to the line $L$: \[ \text{Distance} = 2\sqrt{17} \]
3. Use the distance formula: \[ \sqrt{(3\lambda + 5)^2 + (2\lambda + 5)^2 + (-2\lambda + 4)^2} = 2\sqrt{17} \] \[ (3\lambda + 5)^2 + (2\lambda + 5)^2 + (-2\lambda + 4)^2 = 68 \] \[ 17\lambda^2 - 17 = 0 \implies \lambda = \pm 1 \]
4. Determine the points $A$ and $B$: - For $\lambda = 1$: $A(9, 9, 5)$ - For $\lambda = -1$: $B(-3, -1, 9)$ 5. Calculate $\overrightarrow{OA} \cdot \overrightarrow{OB}$: \[ \overrightarrow{OA} \cdot \overrightarrow{OB} = 9(-3) + 9(-1) + 5(9) = -27 - 9 + 45 = 47 \] Therefore, the correct answer is (2) 47.
Was this answer helpful?
0
0

Top Questions on 3D Geometry

View More Questions