Let $A$ and $B$ be two distinct points on the line $L: \frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2}$. Both $A$ and $B$ are at a distance $2\sqrt{17}$ from the foot of perpendicular drawn from the point $(1, 2, 3)$ on the line $L$. If $O$ is the origin, then $\overrightarrow{OA} \cdot \overrightarrow{OB}$ is equal to:
We have the line \(L: \dfrac{x-6}{3}=\dfrac{y-7}{2}=\dfrac{z-7}{-2}\). Let its parametric form be \(\vec{r}(t)=\vec{a}+t\vec{d}\), where \(\vec{a}=(6,7,7)\) and \(\vec{d}=(3,2,-2)\). A point \(P=(1,2,3)\) drops a perpendicular to \(L\) at foot \(F\). Points \(A,B\in L\) are each at distance \(2\sqrt{17}\) from \(F\). We need \(\overrightarrow{OA}\cdot \overrightarrow{OB}\).
The foot \(F\) of the perpendicular from \(P\) to the line \(\vec{r}(t)=\vec{a}+t\vec{d}\) occurs at parameter
\[ t_0=\frac{\vec{d}\cdot(\vec{P}-\vec{a})}{\vec{d}\cdot \vec{d}}. \]
Moving a distance \(s\) along the line changes the parameter by \(\Delta t=\dfrac{s}{\|\vec{d}\|}\). If \(A,B\) are at distance \(2\sqrt{17}\) from \(F\), then \(|\Delta t|=\dfrac{2\sqrt{17}}{\|\vec{d}\|}\).
Step 1: Find the foot parameter \(t_0\).
\[ \vec{d}=(3,2,-2),\quad \vec{a}=(6,7,7),\quad \vec{P}-\vec{a}=(1-6,\,2-7,\,3-7)=(-5,-5,-4). \] \[ \vec{d}\cdot(\vec{P}-\vec{a})=3(-5)+2(-5)+(-2)(-4)=-15-10+8=-17,\quad \vec{d}\cdot\vec{d}=3^2+2^2+(-2)^2=9+4+4=17. \] \[ t_0=\frac{-17}{17}=-1. \]
Thus the foot \(F=\vec{r}(t_0)=\vec{a}+(-1)\vec{d}=(6,7,7)-(3,2,-2)=(3,5,9).\)
Step 2: Determine the parameters for \(A\) and \(B\).
\[ \|\vec{d}\|=\sqrt{17},\quad s=2\sqrt{17}\ \Rightarrow\ |\Delta t|=\frac{2\sqrt{17}}{\sqrt{17}}=2. \] \[ t_A=t_0+2=-1+2=1,\qquad t_B=t_0-2=-1-2=-3. \]
Step 3: Compute \(A=\vec{r}(1)\) and \(B=\vec{r}(-3)\).
\[ A=\vec{a}+1\cdot\vec{d}=(6,7,7)+(3,2,-2)=(9,9,5), \] \[ B=\vec{a}+(-3)\vec{d}=(6,7,7)+(-9,-6,6)=(-3,1,13). \]
Step 4: Compute the dot product \(\overrightarrow{OA}\cdot\overrightarrow{OB}=A\cdot B\).
\[ A\cdot B=(9,9,5)\cdot(-3,1,13)=9(-3)+9(1)+5(13)=-27+9+65=47. \]
\(\overrightarrow{OA}\cdot \overrightarrow{OB}=47\).
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is:
A thin transparent film with refractive index 1.4 is held on a circular ring of radius 1.8 cm. The fluid in the film evaporates such that transmission through the film at wavelength 560 nm goes to a minimum every 12 seconds. Assuming that the film is flat on its two sides, the rate of evaporation is:
The major product (A) formed in the following reaction sequence is
