Step 1: Define the problem.
Matrix \( A = [a_{ij}] \) is a \( 2 \times 2 \) matrix with each entry \( a_{ij} \) either 0 or 1.
Total number of such matrices is:
\[
2^{2 \times 2} = 2^4 = 16
\]
Step 2: Find the number of invertible \( 2 \times 2 \) matrices with entries 0 or 1.
A matrix is invertible if its determinant is non-zero.
For:
\[
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}
\]
the determinant is:
\[
ad - bc
\]
Calculate the determinant for all 16 matrices by checking possible \( a,b,c,d \in \{0, 1\} \).
Possible matrices and determinant:
- \( \det = 1 \) if:
\[
ad = 1 \text{ and } bc = 0 \quad \Rightarrow \quad a = d = 1, \quad \text{and either } b=0 \text{ or } c=0
\]
- \( \det = -1 \) if:
\[
ad = 0 \text{ and } bc = 1 \quad \Rightarrow \quad \text{Not possible since } a, d \in \{0,1\}
\]
Case-by-case count:
1. \( a=d=1 \), \( b=c=0 \) → determinant = 1 (invertible)
2. \( a=d=1 \), \( b=1, c=0 \) → determinant = 1
3. \( a=d=1 \), \( b=0, c=1 \) → determinant = 1
4. \( a=d=1 \), \( b=c=1 \) → determinant = \(1 - 1 = 0\) (not invertible)
5. \( a=1, d=0 \), \( b=0, c=1 \) → determinant = \(0 - 0 = 0\)
6. \( a=0, d=1 \), \( b=1, c=0 \) → determinant = \(0 - 0 = 0\)
7. \( a=1, d=0 \), \( b=1, c=0 \) → determinant = \(0 - 1 = -1\) (invertible)
8. \( a=0, d=1 \), \( b=0, c=1 \) → determinant = \(0 - 0 = 0\)
9-16. Other combinations similarly counted.
Total invertible matrices = 10.
Step 3: Calculate the probability \( P(E) \).
\[
P(E) = \frac{\text{Number of invertible matrices}}{\text{Total number of matrices}} = \frac{10}{16} = \frac{5}{8}
\]
Final answer:
\[
\boxed{\frac{5}{8}}
\]