A 2x2 matrix is invertible if its determinant is non-zero. We count the total number of 2x2 matrices with entries 0 or 1, which is \( 2^4 = 16 \). Then, we count the number of matrices that are not invertible (i.e., their determinant is zero) and subtract that from the total to find the number of invertible matrices. The probability \( P(E) \) is the ratio of invertible matrices to the total number of matrices.
Final Answer: \( \frac{5}{8} \).
Draw a rough sketch for the curve $y = 2 + |x + 1|$. Using integration, find the area of the region bounded by the curve $y = 2 + |x + 1|$, $x = -4$, $x = 3$, and $y = 0$.
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 