Let A = \(\left\{ \theta \in (0, 2\pi) : \frac{1 + 2i \sin \theta}{1 - i \sin \theta} \text{ is purely imaginary} \right\}\). Then the sum of the elements in A is.
Given:
\( z = \frac{1 + 2i \sin \theta}{1 - i \sin \theta} \times \frac{1 + i \sin \theta}{1 + i \sin \theta} \)
Simplify \( z \):
\[ z = \frac{1 - 2 \sin^2 \theta + i (3 \sin \theta)}{1 + \sin^2 \theta} \]
Re(z) = 0:
\[ \frac{1 - 2 \sin^2 \theta}{1 + \sin^2 \theta} = 0 \]
Solving for \( \sin \theta \):
\[ \sin \theta = \pm \frac{1}{\sqrt{2}} \]
Set of Angles:
\[ A = \left\{ \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \right\} \]
Sum:
\[ \text{sum} = 4\pi \quad (\text{Option 3}) \]
The number of solutions of the equation $ \cos 2\theta \cos \left( \frac{\theta}{2} \right) + \cos \left( \frac{5\theta}{2} \right) = 2 \cos^3 \left( \frac{5\theta}{2} \right) $ in the interval \(\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right ]\) is:
Consider the following reaction occurring in the blast furnace. \[ {Fe}_3{O}_4(s) + 4{CO}(g) \rightarrow 3{Fe}(l) + 4{CO}_2(g) \] ‘x’ kg of iron is produced when \(2.32 \times 10^3\) kg \(Fe_3O_4\) and \(2.8 \times 10^2 \) kg CO are brought together in the furnace.
The value of ‘x’ is __________ (nearest integer).
Among the following cations, the number of cations which will give characteristic precipitate in their identification tests with
\(K_4\)[Fe(CN)\(_6\)] is : \[ {Cu}^{2+}, \, {Fe}^{3+}, \, {Ba}^{2+}, \, {Ca}^{2+}, \, {NH}_4^+, \, {Mg}^{2+}, \, {Zn}^{2+} \]
X g of benzoic acid on reaction with aqueous \(NaHCO_3\) release \(CO_2\) that occupied 11.2 L volume at STP. X is ________ g.
Standard entropies of \(X_2\), \(Y_2\) and \(XY_5\) are 70, 50, and 110 J \(K^{-1}\) mol\(^{-1}\) respectively. The temperature in Kelvin at which the reaction \[ \frac{1}{2} X_2 + \frac{5}{2} Y_2 \rightarrow XY_5 \quad \Delta H = -35 \, {kJ mol}^{-1} \] will be at equilibrium is (nearest integer):
37.8 g \( N_2O_5 \) was taken in a 1 L reaction vessel and allowed to undergo the following reaction at 500 K: \[ 2N_2O_5(g) \rightarrow 2N_2O_4(g) + O_2(g) \]
The total pressure at equilibrium was found to be 18.65 bar. Then, \( K_p \) is: Given: \[ R = 0.082 \, \text{bar L mol}^{-1} \, \text{K}^{-1} \]