Let A = \(\left\{ \theta \in (0, 2\pi) : \frac{1 + 2i \sin \theta}{1 - i \sin \theta} \text{ is purely imaginary} \right\}\). Then the sum of the elements in A is.
Given:
\( z = \frac{1 + 2i \sin \theta}{1 - i \sin \theta} \times \frac{1 + i \sin \theta}{1 + i \sin \theta} \)
Simplify \( z \):
\[ z = \frac{1 - 2 \sin^2 \theta + i (3 \sin \theta)}{1 + \sin^2 \theta} \]
Re(z) = 0:
\[ \frac{1 - 2 \sin^2 \theta}{1 + \sin^2 \theta} = 0 \]
Solving for \( \sin \theta \):
\[ \sin \theta = \pm \frac{1}{\sqrt{2}} \]
Set of Angles:
\[ A = \left\{ \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \right\} \]
Sum:
\[ \text{sum} = 4\pi \quad (\text{Option 3}) \]
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.