37.8 g \( N_2O_5 \) was taken in a 1 L reaction vessel and allowed to undergo the following reaction at 500 K: \[ 2N_2O_5(g) \rightarrow 2N_2O_4(g) + O_2(g) \]
The total pressure at equilibrium was found to be 18.65 bar. Then, \( K_p \) is: Given: \[ R = 0.082 \, \text{bar L mol}^{-1} \, \text{K}^{-1} \]
The molar mass of N\(_2\)O\(_5\) is: \[ \text{Molar mass of N}_2\text{O}_5 = 2(14) + 5(16) = 28 + 80 = 108 \, \text{g/mol} \] The initial moles of N\(_2\)O\(_5\) are given by: \[ n_0 = \frac{37.8}{108} = 0.35 \, \text{mol} \]
Using the ideal gas law, we calculate the initial pressure \( P_0 \): \[ P_0 = \frac{n_0RT}{V} = \frac{0.35 \times 0.082 \times 500}{1} = 14.35 \, \text{bar} \] The total pressure at equilibrium is: \[ P_T = (P_0 - 2x) + 2x + x = P_0 + x \] Given \( P_T = 18.65 \, \text{bar} \), we solve for \( x \): \[ 18.65 = 14.35 + x \quad \Rightarrow \quad x = 4.3 \, \text{bar} \]
The equilibrium partial pressures are: \[ P_{\text{N}_2\text{O}_5} = P_0 - 2x = 14.35 - 2(4.3) = 14.35 - 8.6 = 5.75 \, \text{bar} \] \[ P_{\text{N}_2\text{O}_4} = 2x = 2(4.3) = 8.6 \, \text{bar} \] \[ P_{\text{O}_2} = x = 4.3 \, \text{bar} \]
The equilibrium constant \( K_p \) is: \[ K_p = \frac{P_{\text{N}_2\text{O}_4}^2 \cdot P_{\text{O}_2}}{P_{\text{N}_2\text{O}_5}^2} \] Substituting the values: \[ K_p = \frac{(8.6)^2 \cdot (4.3)}{(5.75)^2} = \frac{73.96 \cdot 4.3}{33.0625} = \frac{318.028}{33.0625} \approx 9.619 \]
The value of \( K_p \) is approximately \( 962 \times 10^{-2} \), and the correct answer is \( \boxed{962} \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: