Let $X = \begin{bmatrix} a & b
c & d \end{bmatrix}$.
Then,
\[
X \begin{bmatrix} 3 & 2 \\ 1 & -1 \end{bmatrix}
= \begin{bmatrix} a & b \\ c & d \end{bmatrix}
\begin{bmatrix} 3 & 2 \\ 1 & -1 \end{bmatrix}
= \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}.
\]
So,
\[
\begin{cases}
3a + 1b = 4\\
2a - 1b = 1\\
3c + 1d = 2\\
2c - 1d = 3
\end{cases}
\]
Solve:
\[
3a + b = 4, 2a - b = 1.
\text{Add:} 5a = 5 \implies a = 1.
\text{So,} b = 1.
\]
Next:
\[
3c + d = 2, 2c - d = 3.
\text{Add:} 5c = 5 \implies c = 1.
\text{So,} d = -1.
\]
So,
\[
X = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}.
\]