\[ \text{Bank A/c} \quad \text{Dr.} \quad \text{Rs }1,00,000 \\ \quad \quad \text{To Debentures A/c} \quad \text{Rs }1,00,000 \]
\[ \text{Debentures A/c} \quad \text{Dr.} \quad \text{Rs }1,00,000 \\ \text{Premium on Redemption A/c} \quad \text{Dr.} \quad \text{Rs }10,000 \\ \quad \quad \text{To Debentureholders A/c} \quad \text{Rs }1,10,000 \]
\[ \text{Debentureholders A/c} \quad \text{Dr.} \quad \text{Rs }1,10,000 \\ \quad \quad \text{To Bank A/c} \quad \text{Rs }1,10,000 \]
\[ \boxed{\text{Debentures issued at par, redeemed at 10\% premium}} \]
For the curve \( \sqrt{x} + \sqrt{y} = 1 \), find the value of \( \frac{dy}{dx} \) at the point \( \left(\frac{1}{9}, \frac{1}{9}\right) \).
Find the Derivative \( \frac{dy}{dx} \)
Given:\[ y = \cos(x^2) + \cos(2x) + \cos^2(x^2) + \cos(x^x) \]