\[ \text{Bank A/c} \quad \text{Dr.} \quad \text{Rs }1,00,000 \\ \quad \quad \text{To Debentures A/c} \quad \text{Rs }1,00,000 \]
\[ \text{Debentures A/c} \quad \text{Dr.} \quad \text{Rs }1,00,000 \\ \text{Premium on Redemption A/c} \quad \text{Dr.} \quad \text{Rs }10,000 \\ \quad \quad \text{To Debentureholders A/c} \quad \text{Rs }1,10,000 \]
\[ \text{Debentureholders A/c} \quad \text{Dr.} \quad \text{Rs }1,10,000 \\ \quad \quad \text{To Bank A/c} \quad \text{Rs }1,10,000 \]
\[ \boxed{\text{Debentures issued at par, redeemed at 10\% premium}} \]
Find the Derivative \( \frac{dy}{dx} \)
Given:\[ y = \cos(x^2) + \cos(2x) + \cos^2(x^2) + \cos(x^x) \]
Solve the following LPP graphically: Maximize: \[ Z = 2x + 3y \] Subject to: \[ \begin{aligned} x + 4y &\leq 8 \quad \text{(1)} \\ 2x + 3y &\leq 12 \quad \text{(2)} \\ 3x + y &\leq 9 \quad \text{(3)} \\ x &\geq 0,\quad y \geq 0 \quad \text{(non-negativity constraints)} \end{aligned} \]