Step 1: Calculate Current Ratio
\[ \text{Current Ratio} = \frac{\text{Current Assets}}{\text{Current Liabilities}} = \frac{2,50,000}{1,00,000} = 2.5:1 \]
Step 2: Calculate Quick Assets
\[ \text{Quick Assets} = \text{Current Assets} - \text{Inventory} - \text{Prepaid Expenses} \] \[ = 2,50,000 - 70,000 - 10,000 = 1,70,000 \]
Step 3: Calculate Quick Ratio
\[ \text{Quick Ratio} = \frac{\text{Quick Assets}}{\text{Current Liabilities}} = \frac{1,70,000}{1,00,000} = 1.7:1 \]
Final Answer:
Current Ratio: 2.5:1
Quick Ratio: 1.7:1
Information Table
| Information | Amount (₹) |
|---|---|
| Preference Share Capital | 8,00,000 |
| Equity Share Capital | 12,00,000 |
| General Reserve | 2,00,000 |
| Balance in Statement of Profit and Loss | 6,00,000 |
| 15% Debentures | 4,00,000 |
| 12% Loan | 4,00,000 |
| Revenue from Operations | 72,00,000 |
Find the Derivative \( \frac{dy}{dx} \)
Given:\[ y = \cos(x^2) + \cos(2x) + \cos^2(x^2) + \cos(x^x) \]
Solve the following LPP graphically: Maximize: \[ Z = 2x + 3y \] Subject to: \[ \begin{aligned} x + 4y &\leq 8 \quad \text{(1)} \\ 2x + 3y &\leq 12 \quad \text{(2)} \\ 3x + y &\leq 9 \quad \text{(3)} \\ x &\geq 0,\quad y \geq 0 \quad \text{(non-negativity constraints)} \end{aligned} \]