Step 1: Calculate Current Ratio
\[ \text{Current Ratio} = \frac{\text{Current Assets}}{\text{Current Liabilities}} = \frac{2,50,000}{1,00,000} = 2.5:1 \]
Step 2: Calculate Quick Assets
\[ \text{Quick Assets} = \text{Current Assets} - \text{Inventory} - \text{Prepaid Expenses} \] \[ = 2,50,000 - 70,000 - 10,000 = 1,70,000 \]
Step 3: Calculate Quick Ratio
\[ \text{Quick Ratio} = \frac{\text{Quick Assets}}{\text{Current Liabilities}} = \frac{1,70,000}{1,00,000} = 1.7:1 \]
Final Answer:
Current Ratio: 2.5:1
Quick Ratio: 1.7:1
For the curve \( \sqrt{x} + \sqrt{y} = 1 \), find the value of \( \frac{dy}{dx} \) at the point \( \left(\frac{1}{9}, \frac{1}{9}\right) \).
Find the Derivative \( \frac{dy}{dx} \)
Given:\[ y = \cos(x^2) + \cos(2x) + \cos^2(x^2) + \cos(x^x) \]