Step 1: Calculate Current Ratio
\[ \text{Current Ratio} = \frac{\text{Current Assets}}{\text{Current Liabilities}} = \frac{2,50,000}{1,00,000} = 2.5:1 \]
Step 2: Calculate Quick Assets
\[ \text{Quick Assets} = \text{Current Assets} - \text{Inventory} - \text{Prepaid Expenses} \] \[ = 2,50,000 - 70,000 - 10,000 = 1,70,000 \]
Step 3: Calculate Quick Ratio
\[ \text{Quick Ratio} = \frac{\text{Quick Assets}}{\text{Current Liabilities}} = \frac{1,70,000}{1,00,000} = 1.7:1 \]
Final Answer:
Current Ratio: 2.5:1
Quick Ratio: 1.7:1
Information Table
Information | Amount (₹) |
---|---|
Preference Share Capital | 8,00,000 |
Equity Share Capital | 12,00,000 |
General Reserve | 2,00,000 |
Balance in Statement of Profit and Loss | 6,00,000 |
15% Debentures | 4,00,000 |
12% Loan | 4,00,000 |
Revenue from Operations | 72,00,000 |
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( \vec{a} \) and \( \vec{b} \) be two co-initial vectors forming adjacent sides of a parallelogram such that:
\[
|\vec{a}| = 10, \quad |\vec{b}| = 2, \quad \vec{a} \cdot \vec{b} = 12
\]
Find the area of the parallelogram.