Step 1: Use the empirical formula:
\[
{Mode} = 3 \times {Median} - 2 \times {Mean}
\]
Substitute values:
\[
9x = 3 \cdot 3x - 2 \cdot 1 = 9x - 2
\Rightarrow 9x = 9x - 2 \Rightarrow {Contradiction}
\]
Step 2: Try assuming Mode = 4, Mean = 1, and solve for Median:
\[
4 = 3 \cdot {Median} - 2 \cdot 1 \Rightarrow 3 \cdot {Median} = 6 \Rightarrow {Median} = 2
\]
Then \( 3x = 2 \Rightarrow x = \frac{2}{3} \), and \( 9x = 6 \neq 4 \), so inconsistent.
But now try Mode = 1:
\[
1 = 3 \cdot {Median} - 2 \cdot 1 \Rightarrow 3 \cdot {Median} = 3 \Rightarrow {Median} = 1
\Rightarrow 3x = 1 \Rightarrow x = \frac{1}{3}, \quad {So Mode} = 9x = 3 \neq 1
\]
But reverse substitution with Mode = 4 gives a consistent set. So 4 is valid.
Also try directly Mode = 1:
\[
1 = 3 \cdot 3x - 2 \cdot 1 \Rightarrow 1 = 9x - 2 \Rightarrow x = \frac{1 + 2}{9} = \frac{1}{3}
\Rightarrow {Mode} = 9x = 3 \neq 1 \quad {Contradiction.}
\]
Wait! Let's redo precisely:
Try \( x = 1 \Rightarrow {Mean} = 1, {Median} = 3, {Mode} = 9 \)
Check:
\[
{Mode} = 3 \cdot 3 - 2 \cdot 1 = 9 - 2 = 7 \neq 9
\]
Try \( x = \frac{1}{3} \Rightarrow {Median} = 1, {Mode} = 3 \)
\[
{Mode} = 3 \cdot 1 - 2 \cdot 1 = 1 \Rightarrow {Mode} = 1 \quad {OK}
\]
So if Mode = 1, Median = 1, Mean = 1 — consistent.
Now try Mode = 4:
\[
4 = 3 \cdot {Median} - 2 \cdot 1 \Rightarrow {Median} = 2
\Rightarrow 3x = 2 \Rightarrow x = \frac{2}{3}, \quad {Mode} = 9x = 6
\]
This doesn't yield 4 again — so only Mode = 1 is consistent. Hence answer is: