Step 1: Use integration by parts. Let: - \( u = \log_e x \), so \( du = \frac{1}{x} \, dx \) - \( dv = dx \), so \( v = x \)
Step 2: Apply the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Substitute the values: \[ \int \log_e x \, dx = x \log_e x - \int x \cdot \frac{1}{x} \, dx \]
Step 3: Simplify: \[ = x \log_e x - \int 1 \, dx = x \log_e x - x \]
Translate the following passage into English: to be translated
Translate the following into English:
Translate the following passage into English: