Step 1: Use integration by parts. Let: - \( u = \log_e x \), so \( du = \frac{1}{x} \, dx \) - \( dv = dx \), so \( v = x \)
Step 2: Apply the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Substitute the values: \[ \int \log_e x \, dx = x \log_e x - \int x \cdot \frac{1}{x} \, dx \]
Step 3: Simplify: \[ = x \log_e x - \int 1 \, dx = x \log_e x - x \]
Solve:
\[ \int \frac{\sin x}{\sin (x+a)} \, dx. \](b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $