\(B = 12× 10^-3\)
\(β'=\frac βμ\)
\(β'=\frac {12×10^{−3}}{\frac 43}\)
\(β'= 9 × 10^{-3} m\)
\(β'= 9\ mm\)
So, the correct option is (B): \(9\).
A beam of unpolarised light of intensity \( I_0 \) is passed through a polaroid A and then through another polaroid B which is oriented so that its principal plane makes an angle of 45° relative to that of A. The intensity of emergent light is:
Two polaroide $A$ and $B$ are placed in such a way that the pass-axis of polaroids are perpendicular to each other Now, another polaroid $C$ is placed between $A$ and $B$ bisecting angle between them If intensity of unpolarized light is $I _0$ then intensity of transmitted light after passing through polaroid $B$ will be:
If $10 \sin^4 \theta + 15 \cos^4 \theta = 6$, then the value of $\frac{27 \csc^6 \theta + 8 \sec^6 \theta}{16 \sec^8 \theta}$ is:
If the area of the region $\{ (x, y) : |x - 5| \leq y \leq 4\sqrt{x} \}$ is $A$, then $3A$ is equal to
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
Let $C$ be the circle $x^2 + (y - 1)^2 = 2$, $E_1$ and $E_2$ be two ellipses whose centres lie at the origin and major axes lie on the $x$-axis and $y$-axis respectively. Let the straight line $x + y = 3$ touch the curves $C$, $E_1$, and $E_2$ at $P(x_1, y_1)$, $Q(x_2, y_2)$, and $R(x_3, y_3)$ respectively. Given that $P$ is the mid-point of the line segment $QR$ and $PQ = \frac{2\sqrt{2}}{3}$, the value of $9(x_1 y_1 + x_2 y_2 + x_3 y_3)$ is equal to
Light travels in form of transverse EM waves. The underlying oscillation is along directions perpendicular to the propagation direction, in this example, oscillating electric and magnetic fields. Process of restricting the vibration of light waves to one direction is known as Polarisation.
There are three types of polarisation such as:
The few methods of polarisation of Light are: