The correct answer is (B) : 2
Path difference at O = (μ-1)t
If the intensity at O remains (maximum) unchanged, path difference must be n 2.
⇒ (μ-1)t = nλ
(1.51) x 2 = nλ
⇒ x = 2n x = 2n
For n = 1, x = 2
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is:
Read More: Young’s Double Slit Experiment