The correct answer is (B) : 2
Path difference at O = (μ-1)t
If the intensity at O remains (maximum) unchanged, path difference must be n 2.
⇒ (μ-1)t = nλ
(1.51) x 2 = nλ
⇒ x = 2n x = 2n
For n = 1, x = 2
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Read More: Young’s Double Slit Experiment