We are given a triangle \( ABC \) with: \[ A = 45^\circ, \quad C = 75^\circ, \quad R = \sqrt{2} \] We need to determine the inradius \( r \). --- Step 1: Compute \( B \) Using the angle sum property of a triangle: \[ B = 180^\circ - (A + C) \] \[ B = 180^\circ - (45^\circ + 75^\circ) = 60^\circ \] --- Step 2: Use the Formula for the Circumradius \( R \) The circumradius formula for a triangle is: \[ R = \frac{a}{2\sin A} \] Since we are not given side lengths explicitly, we proceed with the standard sine rule. From the sine rule: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R \] Substituting \( R = \sqrt{2} \): \[ \frac{a}{\sin 45^\circ} = \frac{b}{\sin 60^\circ} = \frac{c}{\sin 75^\circ} = 2\sqrt{2} \] Evaluating sines: \[ \sin 45^\circ = \frac{\sqrt{2}}{2}, \quad \sin 60^\circ = \frac{\sqrt{3}}{2}, \quad \sin 75^\circ = \frac{\sqrt{6} + \sqrt{2}}{4} \] Computing side lengths: \[ a = 2\sqrt{2} \times \frac{\sqrt{2}}{2} = 2 \] \[ b = 2\sqrt{2} \times \frac{\sqrt{3}}{2} = \sqrt{6} \] \[ c = 2\sqrt{2} \times \frac{\sqrt{6} + \sqrt{2}}{4} = \frac{\sqrt{12} + \sqrt{4}}{2} = \frac{2\sqrt{3} + 2}{2} = \sqrt{3} + 1 \] --- Step 3: Compute Semi-Perimeter \( s \) \[ s = \frac{a + b + c}{2} \] \[ = \frac{2 + \sqrt{6} + \sqrt{3} + 1}{2} \] \[ = \frac{3 + \sqrt{6} + \sqrt{3}}{2} \] --- Step 4: Compute Inradius \( r \) The inradius formula: \[ r = \frac{\text{Area}}{s} \] Using Heron's formula: \[ \Delta = \frac{1}{2} ab \sin C \] \[ = \frac{1}{2} (2)(\sqrt{6}) \times \frac{\sqrt{6} + \sqrt{2}}{4} \] \[ = \frac{2\sqrt{6} (\sqrt{6} + \sqrt{2})}{8} \] \[ = \frac{12 + 2\sqrt{12}}{8} \] \[ = \frac{12 + 4\sqrt{3}}{8} = \frac{3 + \sqrt{3}}{2} \] Thus, \[ r = \frac{\Delta}{s} = \frac{\frac{3 + \sqrt{3}}{2}}{\frac{3 + \sqrt{6} + \sqrt{3}}{2}} \] Canceling \( \frac{1}{2} \): \[ r = \frac{3 + \sqrt{3}}{3 + \sqrt{6} + \sqrt{3}} \] This simplifies to: \[ r = \frac{\sqrt{3}}{\sqrt{3} + \sqrt{2} + 1} \] --- Final Answer: \(\boxed{\frac{\sqrt{3}}{\sqrt{3} + \sqrt{2} + 1}}\)
If \( \sqrt{5} - i\sqrt{15} = r(\cos\theta + i\sin\theta), -\pi < \theta < \pi, \) then
\[ r^2(\sec\theta + 3\csc^2\theta) = \]
For \( n \in \mathbb{N} \), the largest positive integer that divides \( 81^n + 20n - 1 \) is \( k \). If \( S \) is the sum of all positive divisors of \( k \), then find \( S - k \).