Step 1: Signatures on a \(T\!-\!s\) plane.
- Isothermal: \(T=\text{const}\) \(\Rightarrow\) horizontal line.
- Isentropic: \(s=\text{const}\) \(\Rightarrow\) vertical line.
- Isochoric (ideal gas): \(ds=c_v\,dT/T \Rightarrow s=c_v\ln T+\text{const}\); rising curve.
- Isobaric (ideal gas): \(ds=c_p\,dT/T \Rightarrow s=c_p\ln T+\text{const}\); also rising, but for the same \(T\)-rise the entropy change is larger than isochoric since \(c_p > c_v\). Hence the isobaric curve lies \emph{further to the right} (greater \(s\)) than the isochoric one starting from the same state.
Step 2: Identify the curves on the figure.
- \(aa'\) is horizontal \(\Rightarrow\) Isothermal.
- \(bb'\) is vertical \(\Rightarrow\) Isentropic.
- Of the two rising curves, the one farther to the right is Isobaric (\(dd'\)), the other is Isochoric (\(cc'\)).
\(\boxed{aa': \text{isothermal},\; bb': \text{isentropic},\; cc': \text{isochoric},\; dd': \text{isobaric}}\)