For an adiabatic process, the relation between volume and temperature is given by:
\[
T_1 V_1^{\gamma - 1} = T_2 V_2^{\gamma - 1}
\]
Where:
- \( \gamma = 1.5 \) (adiabatic exponent)
- \( T_1 = 27^\circ \text{C} = 300 \, \text{K} \)
- \( V_1 = 800 \, \text{cc} \)
- \( V_2 = 200 \, \text{cc} \)
- \( T_2 \) is the final temperature.
Substituting the values into the equation:
\[
300 \cdot 800^{1.5 - 1} = T_2 \cdot 200^{1.5 - 1}
\]
Simplifying:
\[
300 \cdot 800^{0.5} = T_2 \cdot 200^{0.5}
\]
\[
300 \cdot \sqrt{800} = T_2 \cdot \sqrt{200}
\]
\[
300 \cdot 28.28 = T_2 \cdot 14.14
\]
\[
T_2 = \frac{300 \cdot 28.28}{14.14} \approx 500 \, \text{K}
\]
Thus, the final temperature of the gas is 500 K.